PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Monitoring of the human retina temperature may be useful in the determination of its metabolic state, in the study of environmental damage, and for providing feedback during laser surgery. Due to its location the retina is inaccessible to contact temperature measurements and to standard thermal imaging. Here, we propose the use of a stimulated laser speckle imaging (sLSI) system to monitor thermal deformations in the retina and thus infer retina ground temperature. Our system utilizes laser speckle imaging in combination with a stimulating laser scanning system altering the speckle pattern. Measurements of time dependent speckle cross-correlation along with instantaneous and cumulative speckle shifts are related to the sample temperature. Temperature measurements of optical phantoms and biological media have been achieved and validated through thermocouple measurements of sample temperature.
Sean J. Kirkpatrick,Nicolle Sevilla,Ilyas Saytashev, andJessica C. Ramella-Roman
"Non-invasive determination of retinal temperature through stimulated laser speckle imaging (sLSI) (Conference Presentation)", Proc. SPIE 10880, Optical Elastography and Tissue Biomechanics VI, 108800I (4 March 2019); https://doi.org/10.1117/12.2509841
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Sean J. Kirkpatrick, Nicolle Sevilla, Ilyas Saytashev, Jessica C. Ramella-Roman, "Non-invasive determination of retinal temperature through stimulated laser speckle imaging (sLSI) (Conference Presentation)," Proc. SPIE 10880, Optical Elastography and Tissue Biomechanics VI, 108800I (4 March 2019); https://doi.org/10.1117/12.2509841