Presentation + Paper
22 February 2021 Denoising sample-limited SEM images without clean data
Hairong Lei, Cho Teh, Liangjiang Yu, Gino Fu, Lingling Pu, Wei Fang
Author Affiliations +
Abstract
Over the past few years, noise2noise, noise2void, noise2self, and unsupervised deep-learning (DL) denoising techniques have achieved great success, particularly in scenarios where ground truth data is not available or is difficult to obtain. For semiconductor SEM images, ground truth or clean target images with lower noise levels can be obtained by averaging hundreds of frames at the same wafer location, but it is expensive and can result in physical damage to the wafer. This paper’s scope is to denoise SEM images without clean target images and with limited image counts. Inspired by noise2noise, we proposed an additive noise algorithm and DL U-net. We achieved good denoising performance using a limited number of noisy SEM images, without the clean ground truth images. We proposed the “denoise2next” and “denoise2best”. We compared generative adversarial network(GAN) generated images and Additive noise images for data augmentation. This paper further quantified the impact of image noise level, pattern diversity, and continuous (aka transfer) learning. The data sets used in the work include both line/space and logic pattern.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hairong Lei, Cho Teh, Liangjiang Yu, Gino Fu, Lingling Pu, and Wei Fang "Denoising sample-limited SEM images without clean data", Proc. SPIE 11611, Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, 116111A (22 February 2021); https://doi.org/10.1117/12.2584653
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Scanning electron microscopy

Image enhancement

Image quality

Logic

Semiconducting wafers

Aerospace engineering

Denoising

RELATED CONTENT

Universal denoiser to improve metrology throughput
Proceedings of SPIE (April 09 2024)
ACLV performance dry vs. immersion on 45-nm ground rules
Proceedings of SPIE (March 27 2007)
Inverse lithography technology at chip scale
Proceedings of SPIE (March 21 2006)
Mask pattern fidelity quantification
Proceedings of SPIE (December 17 2003)
Real-world impacts of inverse lithography technology
Proceedings of SPIE (November 05 2005)

Back to Top