Monocrystalline silicon reflectors are widely used in infrared high energy laser systems. In order to ensure the system to achieve high precision and high stability of beam transmission, the reflector needs to have a good laser load capacity for high power density laser under long time irradiation. However, the evaluation of reflector laser load capacity is influenced by multiple factors, which is difficult to be decoupled one by one, and the multiple index systems are not perfect. In this paper, multi-modal characterization methods such as reflectivity, fluorescence detection and surface roughness detection are proposed to establish the influence model of multiple influencing factors on the laser load capacity of monocrystalline silicon reflector. Through quantitative analysis of these defects with specific types and different properties, the surface cleanliness and integrity of the monocrystalline silicon reflector were analyzed from different angles, and the influence trend of each influencing factor on the laser load capacity of the element was obtained. In this paper, a relatively completed characterization system of monocrystalline silicon and the influence model of the laser load capacity of the monocrystalline silicon reflector have been established effectively. The influencing factors of the laser load capacity on the surface of the monocrystalline silicon reflector are evaluated effectively, which lays a foundation for the efficient acquisition of the monocrystalline silicon reflector with high load capacity.
|