Presentation + Paper
4 March 2022 Ultrafast laser ablation of aqueous processed thick-film Li(Ni0.6Mn0.2Co0.2)O2 cathodes with 3D architectures for lithium-ion batteries
Author Affiliations +
Abstract

Lithium-ion batteries have dominated the field of electrochemical energy storage for years due to their high energy density. Recently, with the rapid development of E-mobility, the quest for high power and high energy batteries with reduced production costs has aroused great interest and is still a huge challenge. The energy density at battery level can be increased by using electrodes with thicknesses > 150 μm. However, capacity fade of thick-film electrodes at C-rates > C/2 is observed. To compensate the capacity loss, 3D architectures with a high aspect ratio are produced using ultrafast laser ablation. In addition, aqueous processing of cathodes using water-based binders can achieve environmentally friendly production and cost reduction by replacing the conventional organic PVDF binder and the toxic and volatile NMP solvent. However, the pH value of aqueous processed cathode slurries increases to 12 due to the reaction between active material and water, which decreases the specific capacity of the cells and on the other side results in chemical corrosion of the current collector during casting. In order to determine the optimal pH range and avoid the damage of the current collector, slurries with pH values ranging from 8 to 12 are manufactured.

In this work, thick-film Li(Ni0.6Mn0.2Co0.2)O2 electrodes are manufactured with aqueous binders and acid adjustment, and are subsequently structured using ultrafast laser ablation. This combination is beneficial to achieve green production, low cost, high power, and high energy application of lithium-ion batteries.

Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Penghui Zhu, Alexandra Meyer, and Wilhelm Pfleging "Ultrafast laser ablation of aqueous processed thick-film Li(Ni0.6Mn0.2Co0.2)O2 cathodes with 3D architectures for lithium-ion batteries", Proc. SPIE 11989, Laser-based Micro- and Nanoprocessing XVI, 119890F (4 March 2022); https://doi.org/10.1117/12.2608609
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Electrodes

Laser ablation

Corrosion

Ultrafast lasers

Back to Top