PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Nanocomposite thin-film coated fiber optic sensors can be a promising solution to real-time temperature monitoring of electrical assets and imminent failure detection owing to minimal electrical connections and immunity to electromagnetic interference. However, cost of optical interrogation hardware has been a major roadblock for commercialization of fiber optic sensors. Here, we present a novel and simplified design of a fiber optic temperature sensor based on localized surface plasmon resonance (LSPR) response, a low-cost photodiode transimpedance-amplifier (TIA) circuit and collimated LED for monitoring applications where the cost of deployment is a critical consideration. The TIA circuit is designed to capture temperature-induced optical transmission and reflection responses by photocurrent-converted voltage variations communicated through Serial Peripheral Interface (SPI) wireless communication protocols. Wirelessly interrogable optical fiber sensors can therefore be potentially integrated in a wide range of assets such as grid-scale energy storage and medium or high voltage electric power conversion systems. To further minimize system complexity as compared to transmissionbased sensors demonstrated previously, a major emphasis is on a new reflection-based fiber sensor probe. This is also simulated in an optical waveguide physics-based model with Au-incorporated dielectric matrix oxides deposited on the fiber tip. Preliminary results of modeling the temperature response using end-coated reflection fiber probes are discussed.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Yang-Duan Su, Jordan Athas, Nageswara Lalam, Brandon Grainger, Paul Ohodnicki, "Low-cost plasmonic fiber probe and wireless interrogation for electric power equipment temperature sensing," Proc. SPIE 12105, Fiber Optic Sensors and Applications XVIII, 121050A (27 May 2022); https://doi.org/10.1117/12.2617139