Presentation + Paper
3 June 2022 Transmission control and optimization in next-generation hybrid wireless networks: an online reinforcement learning approach
Son Dinha, Hang Liu, Qi Zhao, Yi Li, Nicholas DeCorte, Genshe Chen
Author Affiliations +
Abstract
Next-generation (5G & beyond) cellular networks promise much higher throughput and lower latency. However, mobile users experiencing poor channel quality not only suffer low data-rate connections with the base station but also reduce cell’s aggregate throughput and increase overall delay. In this paper, we consider a hybrid cellular and mobile ad hoc Device-to-Device (D2D) network that leverages the advantages of both wide-area cellular coverage and high-speed ad hoc D2D relaying to enhance network performance and scalability. Dedicated relay devices, such as Unmanned Aerial Vehicles (UAVs)/drones, can also be deployed to further improve network connectivity and thus throughput. The base station may send the packets destined for a mobile user with poor cellular channel quality to a proxy mobile device with better cellular channel quality. The proxy mobile device will relay the packets to the destination, thereby significanltly improving network throughput and delay. We formulate the data transmission problem and design an online reinforcement learning-based algorithm to achieve the best transmission performance.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Son Dinha, Hang Liu, Qi Zhao, Yi Li, Nicholas DeCorte, and Genshe Chen "Transmission control and optimization in next-generation hybrid wireless networks: an online reinforcement learning approach", Proc. SPIE 12121, Sensors and Systems for Space Applications XV, 121210E (3 June 2022); https://doi.org/10.1117/12.2623041
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Relays

Mobile devices

Energy efficiency

Mobile communications

Optimization (mathematics)

Standards development

Unmanned aerial vehicles

RELATED CONTENT


Back to Top