Multisite contributions are essential to improve the reliability and statistical power of imaging studies but introduce a complexity because of different acquisition protocols and scanners. The hemodynamic response function (HRF) is the transform that relates neural activity to the measured blood oxygenation level-dependent (BOLD) signal in MRI and contains information about the latency, amplitude, and duration of neuronal activations. Acquisition variabilities, without adding harmonization techniques, can severely limit our ability to characterize spatial effects. To address this problem, we propose to study and remove variabilities of the sampling rate and scanners on estimates of the HRF. We computed the HRF using a blind deconvolution method in 547 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) across 62 sites and 18 scanners. The approach consists of studying the changes of the response according to repetition times (TR) and scanner models. We applied ComBAT, a statistical multi-site harmonization technique, to evaluate and reduce the scanner and repetition time effects and used the Wilcoxon rank sum test to assess the performance of the harmonization. Results show high scanner and repetition time variabilities (|d| ≥ 0.38, p = 4.5 × 10!") across features, indicating that using harmonization is crucial in multi-site studies. ComBAT successfully removes the sampling effects and reduces the variance between scanners for 7 out of 10 of the HRF features (|d| ≤ 0.05, p = 0.0052). Scanners effects have been characterized on multi-site datasets, but the repetition time impact has been less studied. We showed that the use of different values of repetition time leads to changes in HRF behavior. Regression modeling changes in the HRF on the harmonized data are not significant (p = 0.0401) which does not allow to conclude how HRF changes with aging.
|