Open Access Paper
12 July 2023 SailCor: compact coronagraph for the Helianthus sub-L1 Mission with solar photonic propulsion
Federico Landini, Fabio Frassetto, Luca Zangrilli, Valeria Caracci, Alberto Riva, Davide Loreggia, Edoardo Redaelli, Marco Riva, Rocco Pellegrini, Enrico Cavallini, Marco Pizzarelli, Christian Circi, Silvano Fineschi
Author Affiliations +
Proceedings Volume 12777, International Conference on Space Optics — ICSO 2022; 1277703 (2023) https://doi.org/10.1117/12.2688482
Event: International Conference on Space Optics — ICSO 2022, 2022, Dubrovnik, Croatia
Abstract
Helianthus is a technological development project funded by the Italian Space Agency for a Phase A study of a space weather station with solar photonic propulsion. Helianthus will have a synchronous orbit with the Earth-Moon barycenter, positioned at about 7 millions km from Earth towards the Sun, thus much closer to the Sun with respect to historical Space Weather instrumentation, which are typically orbiting the Earth or L1. This sub-L1 halo orbit is maintained by radiation pressure on a solar sail as the propulsion mechanism: once in flight, the spacecraft will have a huge square sail, about 40 m long. The scientific payload will be hosted at the center of the sail and will comprise remote-sensing and in situ instruments. Remote sensing: an X-ray detector to detect Solar Flares and SailCor, a coronagraph with a wide field of view. In situ: a plasma analyzer and a magnetometer. For this ”Sailcraft”, a scientific payload with reduced mass and envelope is under study. The maximum allowed mass for the entire scientific payload shall not exceed 5 kg. Both the X-Ray detector and the in situ instruments have a flight heritage. This study aims at developing a laboratory prototype of a coronagraph matching the constraints of mass and envelope of the Helianthus payload. SailCor is a 20 cm long coronagraph with a field of view ranging heliocentric heights 3-30 solar radii. The external occulter is mounted on an extendable boom that will be deployed once in flight. SailCor presents an innovative solution that combines the diffraction apodization by the external occulter and the internal occulter positioning so that no Lyot stop is required. The classical design of externally occulted coronagraphs foresees the positioning of an internal occulter as a conjugated element to the external occulter with respect to the primary objective. The function of the internal occulter is to block the image of of the diffraction from the external occulter edge. Then, a secondary objective generates the coronal image on the detection system. The SailCor solution takes advantage of the focusing effect that the entrance aperture of the instrument induces on the light diffracted by the external occulter. This effect is used to calculate the position of the internal occulter with respect to the primary focal plane. With this approach, there is no need for a Lyot stop and the detection system can be placed at the first focal plane, with a significant reduction of envelope and mass. This contribution describes the design of the prototype of SailCor, used in laboratory to experimentally define the geometry of the occultation system. The activity has been carried out in the INAF OPSys facility clean environment (ISO5/6) hosted at ALTEC S.p.A. (Torino). The source is a solar divergence simulator.
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Federico Landini, Fabio Frassetto, Luca Zangrilli, Valeria Caracci, Alberto Riva, Davide Loreggia, Edoardo Redaelli, Marco Riva, Rocco Pellegrini, Enrico Cavallini, Marco Pizzarelli, Christian Circi, and Silvano Fineschi "SailCor: compact coronagraph for the Helianthus sub-L1 Mission with solar photonic propulsion", Proc. SPIE 12777, International Conference on Space Optics — ICSO 2022, 1277703 (12 July 2023); https://doi.org/10.1117/12.2688482
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Coronagraphy

Stray light

Information operations

Solar processes

Cameras

Astronomical imaging

Objectives

Back to Top