Poster + Paper
1 April 2024 Dynamic x-ray flux modulation of inverse-geometry CT
Author Affiliations +
Conference Poster
Abstract
A novel inverse-geometry CT based on multi-pixel thermionic emission x-ray (MPTEX) sources is under development. Inverse-geometry CT is capable of modulating x-ray flux based on region of interest (ROI) location and thus minimizing x-ray exposure to the patients. The variations of emission currents of the MPTEX source at each projection angle are predetermined based on ROI position and realized by varying filament heating powers. To power and control filament electron emissions, a 50-channel prototype MPTEX control unit was developed based on GaN switching power technology. The filament heating powers of electron sources are controlled individually by a microprocessor while electron emission is turned on and off by switching the bias voltages during inverse-geometry CT scans. The emission current was measured as a function of filament heating voltage. The result shows that magnitude of emission current can be controlled dynamically by varying filament heating voltages. Compared with pulse width modulation, this approach can effectively prolong the lifetime of the filaments by minimizing their working temperature. A simulation of electron emission current sinogram was conducted as well. This work is supported by NIH grant R42EB026401.
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Liuxing Shen, Haydon Windsor, Shuang Zhou, Hao Jiang, and Tiezhi Zhang "Dynamic x-ray flux modulation of inverse-geometry CT", Proc. SPIE 12925, Medical Imaging 2024: Physics of Medical Imaging, 1292540 (1 April 2024); https://doi.org/10.1117/12.3006916
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
X-rays

Modulation

X-ray sources

Power supplies

Computed tomography

X-ray imaging

Prototyping

Back to Top