Paper
29 October 1993 Feature competition and domain of attraction in artificial-perceptron pattern recognizer
Author Affiliations +
Abstract
As we reported previously, learning of a multi-layered hard-limited perceptron can be formulated into a set of simultaneous linear inequalities. Solving these inequalities under a given training set would then allow us to achieve the goal of learning in this system. If the dimension N of the input vector is much larger than the number M of different patterns to be learned, then there is considerable freedom for the system to select a proper solution of the connection matrix. In most cases, even a single layer perceptron will do the learning satisfactorily. This paper reports the results of some theoretical and experimental studies of this one-layered, hard-limited perceptron trained under the novel, one-step, noniterative learning scheme. Particularly, the analysis of some important properties of this novel learning system, such as automatic feature competition, domain of convergence, and robustness of recognition, are discussed in detail.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chia-Lun John Hu "Feature competition and domain of attraction in artificial-perceptron pattern recognizer", Proc. SPIE 2032, Neural and Stochastic Methods in Image and Signal Processing II, (29 October 1993); https://doi.org/10.1117/12.162025
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Analog electronics

Binary data

Detection and tracking algorithms

Boron

Brain mapping

Electrical engineering

Machine learning

RELATED CONTENT

Hybrid neural networks for gray image recognition
Proceedings of SPIE (August 19 1998)
Novel geometrical supervised-learning scheme
Proceedings of SPIE (August 01 1990)
Optimal robustness in noniterative learning
Proceedings of SPIE (April 06 1995)
Stock market index prediction using neural networks
Proceedings of SPIE (March 02 1994)

Back to Top