Heteroepitaxial growth has been studied with copper- and cobalt-based perovskite oxides using molecular beam epitaxy with purified ozone. At firs, oxidation of Co metal is investigated and its phase diagram under ozone ambient is experimentally determined. Next, we have tried to fabricate superlattices with two different combinations: Bi2Sr2CuO6+(delta )/Bi2Sr2CoO6.25 and SrCuO2+(delta )/SrCoO2.5. The former is revealed to be unsuitable for superlattice fabrication because of interdiffusion between Cu and Co, which is also confirmed in thicker bilayer films of Bi2Sr2Can-1CunO2n+4+(delta )(n equals 1, 2, and 3) / Bi2$Sr(subscript m+1ComOy (m equals 1 and 2). In contrast, we can arrange B-site cations (Cu or Co) on an atomic-layer scale in the latter combination, in which we can change the B-site cations in every two layers.
|