Paper
14 January 1998 Laser solder repair technique for nerve anastomosis: temperatures required for optimal tensile strength
Author Affiliations +
Abstract
Laser-assisted repair of nerves is often unsatisfactory and has a high failure rate. Two disadvantages of laser assisted procedures are low initial strength of the resulting anastomosis and thermal damage of tissue by laser heating. Temporary or permanent stay sutures are used and fluid solders have been proposed to increase the strength of the repair. These techniques, however, have their own disadvantages including foreign body reaction and difficulty of application. To address these problems solid protein solder strips have been developed for use in conjunction with a diode laser for nerve anastomosis. The protein helps to supplement the bond, especially in the acute healing phase up to five days post- operative. Indocyanine green dye is added to the protein solder to absorb a laser wavelength (approximately 800 nm) that is poorly absorbed by water and other bodily tissues. This reduces the collateral thermal damage typically associated with other laser techniques. An investigation of the feasibility of the laser-solder repair technique in terms of required laser irradiance, tensile strength of the repair, and solder and tissue temperature is reported here. The tensile strength of repaired nerves rose steadily with laser irradiance reaching a maximum of 105 plus or minus 10 N.cm-2 at 12.7 W.cm-2. When higher laser irradiances were used the tensile strength of the resulting bonds dropped. Histopathological analysis of the laser- soldered nerves, conducted immediately after surgery, showed the solder to have adhered well to the perineurial membrane, with minimal damage to the inner axons of the nerve. The maximum temperature reached at the solder surface and at the solder/nerve interface, measured using a non-contact fiber optic radiometer and thermocouple respectively, also rose steadily with laser irradiance. At 12.7 W.cm-2, the temperatures reached at the surface and at the interface were 85 plus or minus 4 and 68 plus or minus 4 degrees Celsius respectively. This study demonstrates the feasibility of the laser-solder repair technique for nerve anastomosis resulting in improved tensile strength. The welding temperature required to achieve optimal tensile strength has been identified.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Karen M. McNally-Heintzelman, Judith M. Dawes, Antonio Lauto, Anthony E. Parker, Earl R. Owen M.D., and James A. Piper "Laser solder repair technique for nerve anastomosis: temperatures required for optimal tensile strength", Proc. SPIE 3195, Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, (14 January 1998); https://doi.org/10.1117/12.297913
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Laser welding

Nerve

Proteins

Solids

Semiconductor lasers

Laser tissue interaction

Temperature metrology

RELATED CONTENT

Low-temperature solder for laser tissue welding
Proceedings of SPIE (December 12 2003)
Albumin-genipin solder for laser tissue welding
Proceedings of SPIE (July 13 2004)
Optimal parameters for laser tissue soldering
Proceedings of SPIE (July 01 1998)
Solubility studies of albumin protein solders
Proceedings of SPIE (June 17 2002)

Back to Top