Paper
26 August 1999 Case study for life-long learning and adaptation in coopertive robot teams
Lynne E. Parker
Author Affiliations +
Abstract
While considerable progress has been made in recent years toward the development of multi-robot teams, much work remains to be done before these teams are used widely in real-world applications. Two particular needs toward this end are the development of mechanisms that enable robot teams to generate cooperative behaviors on their own, and the development of technique that allow these teams to autonomously adapt their behavior over time as the environment or the robot team changes. This paper proposes the use of the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) applications as a rich domain for studying the issues of multi-robot learning and adaptation. After discussing the need for learning and adaptation in multi-robot teams, this paper describes the CMOMMT application and its relevance to multi-robot learning. We discuss the result of the previously-developed, hand-generated algorithm for CMOMMT and the potential for learning that was discovered from the hand-generated approach. We then describe the early work that has been done to generate multi-robot learning techniques for the CMOMMT application, as well as our ongoing research to develop approaches that give performance as good, or better, than the hand-generated approach. The ultimate goal of this research is to develop techniques for multi-robot learning and adaptation in the CMOMMT application domain that will generalize to cooperative robot applications in other domains, thus making the practical use of multi-robot teams in a wide variety of real-world applications much closer to reality.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lynne E. Parker "Case study for life-long learning and adaptation in coopertive robot teams", Proc. SPIE 3839, Sensor Fusion and Decentralized Control in Robotic Systems II, (26 August 1999); https://doi.org/10.1117/12.360329
Lens.org Logo
CITATIONS
Cited by 14 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Detection and tracking algorithms

Robotic systems

Target detection

Systems modeling

Algorithm development

CCD image sensors

RELATED CONTENT

Dynamic sensor-based fault detection for robots
Proceedings of SPIE (December 21 1993)
Bayesian sensor resource allocation
Proceedings of SPIE (September 03 1998)
Optimal reload strategies for identify-and-destroy missions
Proceedings of SPIE (September 21 2004)
Model-based target and background characterization
Proceedings of SPIE (July 24 2000)

Back to Top