PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
We present a modeling technique for the interaction of an elliptical-shape crack in a metal with an open-ended waveguide. The crack is first modeled by an appropriate number of short rectangular waveguides. The mode-matching technique is then used to calculate the scattering matrix of the new segmented waveguide structure. The probe reflection coefficient of the dominant mode is finally calculated for various positions of the crack in order to predict the probe output signal. To demonstrate the accuracy of the model, we consider cracks of various aspect ratios. The comparison of our results with those obtained using a commercial finite element code validates the model introduced in this paper.
Farhad Mazlumi,Hesam Sadeghi, andR. Moini
"Output signal prediction of an open-ended waveguide probe when scanning elliptically shaped cracks in metals", Proc. SPIE 4703, Nondestructive Evaluation and Reliability of Micro- and Nanomaterial Systems, (7 June 2002); https://doi.org/10.1117/12.469619
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Farhad Mazlumi, Hesam Sadeghi, R. Moini, "Output signal prediction of an open-ended waveguide probe when scanning elliptically shaped cracks in metals," Proc. SPIE 4703, Nondestructive Evaluation and Reliability of Micro- and Nanomaterial Systems, (7 June 2002); https://doi.org/10.1117/12.469619