Paper
20 May 2005 Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar
Chieh-Ping Lai, Ram M. Narayanan
Author Affiliations +
Abstract
Recent terrorist activities and law-enforcement situations involving hostage situations underscore the need for effective through-wall imaging. Current building interior imaging systems are based on short-pulse waveforms, which require specially designed antennas to subdue unwanted ringing. In addition, periodically transmitted pulses of energy are easily recognizable by the intelligent adversary who may employ appropriate countermeasures to confound detection. A coherent polarimetric random noise radar architecture is being developed based on UWB technology and software defined radio, which has great promise in its ability to covertly image obscured targets. The main advantages of the random noise radar lie in two aspects: first, random noise waveform has an ideal “thumbtack” ambiguity function, i.e., its down range and cross range resolution can be separately controlled, thus providing unambiguous high resolution imaging at any distance; second, random noise waveform is inherently low probability of intercept (LPI) and low probability of detection (LPD), i.e., it is immune from detection, jamming, and interference. Thus, it is an ideal candidate sensor for covert imaging of obscured regions in hostile environments. The coherency in the system can be exploited to field a fully-polarimetric system that can take advantage of polarization features in target recognition. Moving personnel can also be detected using Doppler processing. Simulation studies are used to analyze backscattered signals from the walls, and humans and other targets behind the walls. Real-time data processing shows human activity behind the wall and human target tracking. The high resolution provides excellent multipath and clutter rejection.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chieh-Ping Lai and Ram M. Narayanan "Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar", Proc. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, (20 May 2005); https://doi.org/10.1117/12.604154
Lens.org Logo
CITATIONS
Cited by 43 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Radar

Target detection

Dielectrics

Radar imaging

Motion models

Time-frequency analysis

Transmitters

Back to Top