Paper
27 March 2006 Optimal actuator location within a morphing wing scissor mechanism configuration
Author Affiliations +
Abstract
In this paper, the optimal location of a distributed network of actuators within a scissor wing mechanism is investigated. The analysis begins by developing a mechanical understanding of a single cell representation of the mechanism. This cell contains four linkages connected by pin joints, a single actuator, two springs to represent the bidirectional behavior of a flexible skin, and an external load. Equilibrium equations are developed using static analysis and the principle of virtual work equations. An objective function is developed to maximize the efficiency of the unit cell model. It is defined as useful work over input work. There are two constraints imposed on this problem. The first is placed on force transferred from the external source to the actuator. It should be less than the blocked actuator force. The other is to require the ratio of output displacement over input displacement, i.e., geometrical advantage (GA), of the cell to be larger than a prescribed value. Sequential quadratic programming is used to solve the optimization problem. This process suggests a systematic approach to identify an optimum location of an actuator and to avoid the selection of location by trial and error. Preliminary results show that optimum locations of an actuator can be selected out of feasible regions according to the requirements of the problem such as a higher GA, a higher efficiency, or a smaller transferred force from external force. Results include analysis of single and multiple cell wing structures and some experimental comparisons.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James J. Joo, Brian Sanders, Terrence Johnson, and Mary I. Frecker "Optimal actuator location within a morphing wing scissor mechanism configuration", Proc. SPIE 6166, Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, 616603 (27 March 2006); https://doi.org/10.1117/12.658830
Lens.org Logo
CITATIONS
Cited by 26 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Skin

Energy efficiency

Aerodynamics

Analytical research

Computer programming

Distributed computing

Back to Top