PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Considerable progress has been achieved recently to enhance the thermal neutron detection efficiency of solid-state neutron detectors that incorporate neutron sensitive materials such as 10B and 6LiF in Si micro-structured p-n junction diode. Here, we describe the design, fabrication process optimization and characterization of an enriched boron filled honeycomb structured neutron detector with a continuous p+-n junction. Boron deposition and diffusion processes were carried out using a low pressure chemical vapor deposition to study the effect of diffusion temperature on current density-voltage characteristics of p+-n diodes. TSUPREM-4 was used to simulate the thickness and surface doping concentration of p+-Si layers. MEDICI was used to simulate the depletion width and the capacitance of the microstructured devices with continuous p+-n junction. Finally, current density-voltage and pulse height distribution of fabricated devices with 2.5×2.5 mm2 size were studied. A very low leakage current density of ~2×10-8 A/cm2 at -1 V (for both planar and honeycomb structured devices) and a bias-independent thermal neutron detection efficiency of ~26% under zero bias voltage were achieved for an enriched boron filled honeycomb structured neutron detector with a continuous p+-n junction.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.