The electromagnetic coupling of surface-plasmon-polariton (SPP) modes, which are localized around the surface of a conductive substrate, to quantum plasmons in a graphene sheet above the surface is investigated and their hybrid quantum-plasmon modes are analyzed. For a double-layer graphene structure, on the other hand, the interplay between the electromagnetic couplings of SPPs to each graphene sheet is explored. An effective- polarizability tensor for a combined system, including coupled double-layer graphene and conductive substrate, has been derived, which consists of the retarded nonlocal Coulomb interactions between electrons in different graphene sheets and the conductive substrate. Additionally, this calculated effective-scattering tensor can be used for constructing an effective-medium theory to study optical properties of inserted nanorods between the graphene sheets and metallic surface.
|