SHORT-WAVELENGTH INFRARED WINDOWS FOR BIOMEDICAL APPLICATIONS

SHORT-WAVELENGTH INFRARED WINDOWS FOR BIOMEDICAL APPLICATIONS

Laura A. Sordillo Peter P. Sordillo

Editors

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Sordillo, Laura A., editor. | Sordillo, Peter P., editor.

Title: Short-wavelength infrared optical windows for biomedical applications / Laura A. Sordillo and Peter P. Sordillo.

Description: Bellingham, Washington, USA : SPIE–The International Society for Optical Engineering, [2022] | Includes bibliographical references and index.

Identifiers: LCCN 2021039236 | ISBN 9781510646230 (hardcover) | ISBN 9781510646247 (pdf)

Subjects: LCSH: Biomedical materials. | Artificial intelligence.

Classification: LCC R857.M3 S53 2021 | DDC 610.28-dc23/eng/20211007

LC record available at https://lccn.loc.gov/2021039236

Published by SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: www.spie.org

Copyright © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors and editors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Cover design by Laura A. Sordillo

Printed in the United States of America. First printing For updates to this book, visit http://spie.org and type "PM336" in the search field.

Contents

Preface Contribu Acronyr	itors ns and A	Abbreviations	xv xix xxiii	
Part I S	WIR Teo	chniques	1	
1 Opti Fran Ana	cal Prop cisco J. Sánche	perties of Tissues Using SWIR Light Salgado-Remacha, Sebastián Jarabo, and z-Cano	3	
1.1	Introdu	uction	4	
1.2	Optica	I Properties of Major Tissue Components	5	
	1.2.1	SWIR light sources and detectors	6	
1.3	Novel	SWIR Supercontinuum Source	9	
1.4	Effectiv	ve Filtering of Scattered Light	12	
	1.4.1	Experimental setup for direct light measurement	13	
	1.4.2	Theory	14	
	1.4.3	Comparison of both experimental methods for		
		assessment of the attenuation coefficient in a		
		scattering media phantom	15	
1.5	Spectr	al Attenuation Measurements of Brain and Retinal		
	Tiss	sues in the SWIR Region: Experiment I	17	
	1.5.1	Materials and methods	17	
	1.5.2	Results and discussion	18	
	1.5.3	Conclusions from experiment I	20	
1.6	Measu	rement of Optical Properties of ex vivo Brain		
	Tiss	sues in the SWIR Range: Experiment II	21	
	1.6.1	Theory	21	
	1.6.2	Experimental procedure	23	
	1.6.3	Results and discussion	24	
	1.6.4	Comparison with the literature and final remarks	29	
1.7	Conclu	usion	32	
Refe	References			

2	Lumi Eff	uminescence Nanothermometry and Photothermal Conversion Efficiency for Particles Operating in the SWIR Region 4'			41
	Alber	nc Nexh	a, Joan J	osep Carvajal, and Maria Cinta Pujol	
	2.1	Light–N	Aatter Inte	eractions	42
	2.2	Lumine	scence N	lanothermometry in the SWIR Region	45
		2.2.1	QD-base	ed luminescent nanothermometers	45
			2.2.1.1	PbS@CdS@ZnS QD-based luminescent	
				nanothermometers	46
			2.2.1.2	Ag ₂ S QD-based luminescent nanothermometers	49
		2.2.2	TM-base	ed luminescent nanothermometers	58
		2.2.3	Lanthani	ide-based luminescent nanothermometers	62
			2.2.3.1	Nd ³⁺ -based luminescent nanothermometers	63
			2.2.3.2	Er ³⁺ -based luminescent nanothermometers	67
			2.2.3.3	Tm ³⁺ /Ho ³⁺ -based luminescent nanothermometers	73
	2.3	Phototh	nermal Co	onversion Agents	76
		2.3.1	Self-asse	essed ex vivo photothermal conversion agents	80
	2.4	Conclu	ding Rem	arks	82
	Refer	rences			83
3	SWIR	Prope	rties of R	are-Farth-Doned Nanonarticles for	
0	Bio	medica		tions	91
	Yang	Shena	Zhenahu	an Zhao, and Mei Chee Tan	•••
	3.1	Introdu	ction		92
	3.7	Design	and Synt	thesis of Rare-Farth-Doned Nanoparticles (REDNs)	94
	0.2	3 2 1	Material	s selection for host and donants	94
		322	Core/she		95
		323	Synthesi	is methods	96
	33		ersion ar	ad SWIR for Biomedical Photoluminescence Imaging	98
	0.0	331	Upconve	ersion photoluminescence imaging	98
		332	SWIR in	nading	100
	34	Photoa	coustic In	naging	105
	3.5	Multifur	nctional P	latforms Based on SWIR-Emitting REDNs	108
	0.0	3.5.1	REDN-b	ased multimodal imaging	109
		0.0.1	3.5.1.1	SWIR and photoacoustic imaging	110
			3.5.1.2	PL and CT imaging	112
			3.5.1.3	PL/PET/SPECT imaging	112
			3.5.1.4	PL/MRI imaging	114
				$3.5.1.4.1$ PL/ T_1 combination	114
				3.5.1.4.2 PL/T_2 combination	116
				3.5.1.4.3 $PL/T_1/T_2$ triple modalities	117
		3.5.2	REDN-b	ased theranostic platforms	117
			3.5.2.1	SWIR/chemotherapy	118
			3.5.2.2	SWIR/photodynamic therapy	119
			3.5.2.3	SWIR/photothermal therapy	120

	36	Toxicit	V	123
	3.7	Summa	arv and Perspectives	126
	Refe	rences		127
Л	Shor	t-Wavo	Infrared Meso-Patterned Imaging for	
-	Qu Yany 4.1	uantitati vu Zhao, Introdu	ve and Label-Free Tissue Characterization Anahita Pilvar, Mark C. Pierce, and Darren Roblyer action to SWIR-Meso-Patterned Imaging	141 141
	4.2	Wat	er and Linid Content in Tissue	143
	43	SWIR-	MPL Instrumentation	148
	4.4	Advant	ages of SWIR-MPI in Probing Depth and Spatial Resolution	150
	4.5	Examp	les of Potential Biomedical Applications for SWIR-MPI	154
	4.6	Future	Directions	155
	Refe	rences		155
5	Shor	t-Wavel	ength Infrared Hyperspectral Imaging for Biomedical	
	Ap	plicatio	ons	161
	Lise	Lyngsne	es Randeberg, Julio Hernández, and Emilio Catelli	
	5.1	Introdu	iction	162
	5.2	Medica	al Hyperspectral Imaging	164
	5.3	Hypers	spectral Instrumentation and Setup	166
	5.4	Hypers	spectral Data Collection	173
	5.5	Hypers	spectral Data Analysis	175
	5.6	Data A	nalysis and Simulations	175
	5.7	Chemo	pmetric Tools and Methods from Spectroscopy	176
		5.7.1	Spectral preprocessing	178
		5.7.2	Unsupervised methods	180
			5.7.2.1 Principal component analysis	180
			5.7.2.2 Cluster analysis	183
		E 7 0	5.7.2.3 Methods for purest spectra extraction	185
	50	D.7.3 Maabir	Supervised method: regression	109
	0.0 Δckn	owledar	nents	103
	Refe	rences	nents	193
6	VIS		/ideband Long Free Microscopic Imaging	200
0	Ziduc Zhen Epim	o Lin, Al xiang Li hitheas (bdulkadir Yurt, Geert Vanmeerbeeck, Murali Jayapala, uo, Jiwon Lee, Joo Hyoung Kim, Vladimir Pejovic, Georgitzikis, Pawel Malinowski, and Andy Lambrechts	209
	6.1	Introdu	lction	209
	6.2	System	n Development and Evaluation	211
		6.2.1	System development	211
		6.2.2	Quantum dot sensor	212

vii

viii			Co	ntents
		6.2.3	System performance evaluation	213
	6.3	Applica	ations	215
		6.3.1	Silicon inspection and measurement	215
		6.3.2	Cell and tissue imaging	217
	64	0.3.3 Euturo	Prospecto	219
	0.4 Dofo	Fulure	Prospecis	220
De		nnligati		220
га _				221
7	SWIF	R Fluore	escence and Monte Carlo Modeling of Tissues for	000
	IVIE Totor		ppilcations Shunauka Kiya Kaauka Kubata Akitaabi Saiyama	229
	Taka	ishi Jin,	and Yasutomo Nomura	
	7.1	Introdu	iction	230
	7.2	Monte	Carlo Models in Multilavered Media (MCML)	232
		7.2.1	Calculation routine	232
		7.2.2	SWIR photon migration	234
	7.3	Fluores	scence Monte Carlo Simulation	236
		7.3.1	Point source of fluorescence MCML for cerebral angiography	236
		7.3.2	Spherical source of fluorescence MCML for breast cancer	241
			7.3.2.1 Overview of the model	241
			7.3.2.2 Fluorescence photon migration in MCML: breast model	243
	7.4	SWIR	Fluorescence Monte Carlo Model in Voxelized Media (MCVM)	
		for E	Breast Cancer	244
		7.4.1	The breast model	245
		7.4.2	Image processing and implementation of the model	246
		7.4.3	Excitation gradient	247
		7.4.4	Setting optical parameters that reflect duct morphology	248
		7.4.5	SWIR for detection of small breast cancer in deep tissue	250
	7.5	Conclu	isions and Perspectives	251
	Refe	rences		252
8	Multi	modal \$	SWIR Laser Imaging for Assessment and Detection of	
	Ur	othelial	Carcinomas	261
	Gust Andr	avo Cas ea Liaci	stro-Olvera, Simone Morselli, Mauro Gacci, Sergio Serni, , Rosella Nicoletti, and Pablo Loza-Alvarez	
	8.1	Introdu	iction	262
		8.1.1	Epidemiology	262
		8.1.2	Aetiology	262
		8.1.3	Histopathology and staging	262
		8.1.4	Clinical presentation	264
		8.1.5	Diagnosis	264
		8.1.6	Treatment	265

		8.1.7 Diagnostic needs in clinical practice	265
	8.2	Role of Multimodal SWIR Laser Imaging	266
		8.2.1 SWIR	267
		8.2.2 Multimodal microscopy	267
		8.2.3 Nonlinear optics for microscopy	268
		8.2.4 Two-photon excited fluorescence (TPEF)	270
		8.2.5 Second-harmonic generation (SHG)	270
		8.2.6 Third-harmonic generation (THG)	271
	8.3	SWIR Optical Windows	272
		8.3.1 First biological window	272
		8.3.2 Second and third biological windows	273
	8.4	Damage and Image Optical Thresholds	274
	8.5	Conclusion	277
	Refer	rences	277
9	SWIR	Fluorescence Endoscopy for Tumor Imaging	287
	Yong	kuan Suo, Hongguang Liu, and Zhen Cheng	
	9.1	Introduction	287
	9.2	Endoscopic Imaging	288
	9.3	SWIR Fluorescence Endoscopic Imaging	292
	Refer	rences	294
10	Short	Wavalangth Infrarad Hyporchastral Imaging to Access	
10	G	etrointecting Stromal Tumors during Surgery	201
	Ga	suomesunai Suomai Tumois uunng Surgery	301
	Hideo	o Yokota, and Kohei Soga	
	10.1	Short-Wavelength Infrared Imaging	302
	10.2	Hyperspectral Imaging	303
	10.3	Data Processing Methods for Hyperspectral Imaging	305
	10.4	Distinction of Gastrointestinal Stromal Tumors by SWIR-HSI	308
	10.5	Wavelength Band Reduction Method for Hyperspectral Data	311
	10.6	Development of SWIR-HSI Devices for Clinical Applications	315
	10.7	Summary	318
	Ackn	owledgments	318
	Refer	rences	318
Pa	rt III A	pplications: Diseases of the Heart, Brain, Skin, and Other Organs	325
11	SWIR	for the Assessment of Heart Failure	327
	Aaroi Matth	n G. Smith, Shona Stewart, Marlena B. Darr, Robert C. Schweitzer, new Nelson, Patrick J. Treado, and J. Christopher Post	
	11.1	Introduction	327
	11.2	Current Methods of Heart Failure Patient Assessment	328
	11.3	Molecular Chemical Imaging	330
	11.4	Application of SWIR-MCI to Heart Failure Space	332
	11.5	SWIR Clinical Studies Results	335

ix

<u>x</u>	Contents
11.5.1 Introduction and clinical perspective	335
11.5.2 Methods and results	336
11.6 Discussion	345
11.7 Future Directions	346
References	348
12 Transparent Polycrystalline Ceramic Cranial Implant with Photonic	
Functionality in the SWIR	357
Santiago Camacho-López, Nami Davoodzadeh, David L. Halaney, Juan A. Hernández-Cordero, Guillermo Aguilar, Gabriel R. Castillo, Antonio Cisneros-Martínez, Beatriz Coyotl-Ocelotl, Roger Chiu, Julio C. Ramírez-San-Juan, and Rubén Ramos-García	
12.1 Introduction	358
12.2 Theranostic Cranial Implant for Hyperspectral Light Delivery and	l
Microcirculation Imaging without Scalp Removal	359
12.2.1 Ex vivo proof of concept: optical transmittance	
measurements	362
12.2.2 In vivo demonstration of optical access for LSI of brain	
microvasculature	365
12.3 Femtosecond Laser-Written Waveguides in nc-YSZ for WttB in	
	370
12.3.1 Waveguide writing	370
12.3.2 Depressed cladding waveguides: discrete versus contin	uous 373
12.4. Imaging through Highly Scattering Modia	374
12.4 Inaging through highly Scattering Media	370
12.4.1 Easer speecke contrast imaging (2001)	nial
implant	380
12.4.3 Single-pixel imaging (SPI)	382
12.4.4 Lensless camera	384
12.5 Optical Fiber Probes for Diagnostics and Therapeutics	388
12.5.1 Fiber-optic temperature sensors	388
12.5.2 Fiber-optic polymer microbubble sensors for temperature	and
deformation	390
12.5.3 Photothermal probes	392
12.6 Conclusion	393
Funding	394
Acknowledgments	394
References	394

13	SWIR Us	t Hypers ing Bloo	spectral Imaging to Assess Neurocognitive Disorders od Plasma Samples	407
	Raqu Franc	el Leon, cisco Ba	, Abian Hernandez, Himar Fabelo, Samuel Ortega, lea-Fernández, and Gustavo M. Callico	
	13.1 Introduction			408
	13.2	Materia	Is and Methods for Generating a Hyperspectral SWIR Blood	
		Plas	ma Database	411
		13.2.1	Blood plasma sample preparation and HS-SWIR setup for	
			data acquisition	411
		13.2.2	HS image preprocessing	414
		13.2.3	Blood plasma HS dataset partition	415
		13.2.4	Statistical preprocessing approach	417
	13.3	Proces	sing Framework of HS-SWIR Blood Plasma Samples	419
		13.3.1	Machine learning approach	420
		13.3.2	Deep learning approach	421
		13.3.3	Evaluation metrics	422
	13.4	Experin	nental Results and Discussion	423
		13.4.1	Validation classification results	423
		13.4.2	Test classification results	427
		13.4.3	Limitations	428
	13.5	Conclu	sions	429
	Ackn	owledgm	nents	430
	Refer	rences		430
14	Нуре	rspectra	al SWIR Imaging of Skin Inflammation	439
	Leon	id Shmu	ıylovich and Mikhail Y. Berezin	
	14.1	Introdu	ction	439
		14.1.1	Contact dermatitis as a model inflammatory skin disease	440
		14.1.2	Skin imaging landscape	442
	14.2	Extend	ing Beyond the Visible and Near-Infrared to the SWIR	443
	14.3	SWIR I	Hyperspectral Imaging of Allergic Contact Dermatitis	445
		14.3.1	HSI hardware and software for image analysis	445
		14.3.2	Applying SWIR-HSI and IDCube analysis to ACD	445
		14.3.3	Evidence of pigmentation-independent imaging in the SWIR spectral range	447
		14.3.4	Designing SWIR multispectral imaging from	
			hyperspectral data	448
	14.4	Conclu	sions	450
	References 45			450

15 Us	e of a SWIR	Otoscope in the Assessment of Pediatric and Other	
(Conditions		455
Nir	vikalpa Nata	rajan, Yu-Jin Lee, and Tulio A. Valdez	
15	1 Introduction	on	455
15	2 Middle Ea	ar Anatomy	456
15	3 Pathophy	siology of Middle Ear Infections	458
15	4 Diagnosis	: Current Modalities and Challenges	459
15	5 SWIR		460
15	6 Preclinica	I Studies: Optical Properties of the Human Tympanic	
	Membr	ane	461
15	7 Preclinica	I Studies to Evaluate SWIR Imaging	462
	15.7.1 E	<i>x vivo</i> analysis of human tympanic fluid	462
	15.7.2 A	nalysis of a middle ear fluid phantom in a middle ear model	465
15	8 Fluoresce	ence Chemical Sensors in Conjunction with SWIR Imaging	
	Tools	for Detecting Otitis Media in a Murine Model	466
15	9 SWIR Ot	oscope Design	469
15	10 Clinical S		470
	15.10.1	SWIR imaging of human middle ear anatomy in adults	470
	15.10.2	SWIR otoscopy in a pediatric population	4/1
15	11 Conclusio	א ר	473
Re	terences		473
16 Us	e of an OCT	System in the Short-Wavelength Infrared Region:	
4	Applications	i	481
Pa	uline John, \	/ani Damodaran, and Nilesh J. Vasa	
16	1 Introducti	on	482
16	2 Optical C	oherence Tomography (OCT)	484
	16.2.1 E	asic principles of the OCT technique	484
	16.2.2 C	Different types of OCT systems	485
	1	6.2.2.1 Time domain OCT system	486
	1	6.2.2.2 Frequency domain OCT system	486
		16.2.2.2.1 Spectral domain OCT	487
		16.2.2.2.2 Swept source OCT	488
10	1	6.2.2.3 Functional OCT: polarization-sensitive OCT	489
16	3 Applicatio	in I: SWIR OCT for Dental Imaging	491
	16.3.1 L	Jental caries	491
	16.3.2 Ir	naging of dental caries	494
40	16.3.3 F	(estoration and secondary carles	497
16	4 Applicatio	In II: SWIK OUT for Glucose Monitoring in the Anterior	400
		ber of the Human Eye	499
	10.4.1 L	JIADELES	499

	16.4.2	Glucose n	nonitoring techniques	500
		16.4.2.1	Principles of spectral-domain differential-absorption	
			low-coherence interferometry (SD-DA-LCI)	502
		16.4.2.2	Theory of DA-based SD-LCI	504
	16.4.3	Glucose n	nonitoring using a supercontinuum laser source in	500
IC F	Canalu	the ant	erior champer of a numan eye model	506
0.5 Pofor	Conclus	51011		509
/eiei	ences			510
SWIR	Imagin	g of Lesio	ns on Tooth Surfaces	521
Janie	ei Fried	. C		504
17.1	Introduc	Description	of Devial Hand Theorem and Leader Organization	521
7.2	Optical	Properties	of Dental Hard Tissues and Lesion Contrast at	500
173	Dotocti	vavelen	guis	523
17.5	Detectio	on of Carie	as Lesions and Dental Calculus on Root Surfaces	522
17.4	Detectio	on of Seco	ndary Carles	535
17.6	Charac	erization o	of Developmental Defects	537
7.7	Imaging	Cracks in	n Teeth	538
7.8	Assess	ment of Le	esion Activity	540
7.9	Summa	ry		542
Refer	ences	,		543
IV A	rtificial	Intelligend	ce	555
Adva	nces in	SWIR Dee	p Tissue Imaging Using Machine Learning	557
aura	A. Sor	dillo and D	iana C. Sordillo	
8.1	Introduo	ction		557
8.2	Short-V	/avelength	Infrared (SWIR)	558
8.3	Deep L	earning Mo	odels	562
	18.3.1	Overview	of deep learning	562
	18.3.2	Popular D	DL models in biophotonics	564
8.4	Machin	e Learning	Techniques, SWIR, and Disease	565
	18.4.1	Machine I	earning and biophotonics	565
	18.4.2	Machine I	earning and SWIR	567
8.5	Conclus	sion		569
Refer	ences			569
х				577
	6.5 Refer 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Refer 8.1 8.2 8.3 8.3 8.3 8.4 8.5 Refer 8.5 Refer 8.5 Refer	16.4.2 16.4.3 6.5 Conclus References WIR Imagin Daniel Fried 7.1 Introduc 7.2 Optical SWIF 7.3 Detectio 7.4 Detectio 7.5 Detectio 7.6 Charact 7.7 Imaging 7.8 Assessi 7.9 Summa References IV Artificial Advances in aura A. Soro 8.1 Introduc 8.2 Short-W 8.3 Deep L 18.3.1 18.3.2 8.4 Machine 18.4.1 18.4.2 8.5 Conclus References X	16.4.2 Glucose r 16.4.2.1 16.4.2.2 16.4.3 Glucose r the ant 6.5 Conclusion References WIR Imaging of Lesio Daniel Fried 7.1 Introduction 7.2 Optical Properties SWIR Wavelen 7.3 Detection of Carie 7.4 Detection of Carie 7.5 Detection of Seco 7.6 Characterization of 7.7 Imaging Cracks in 7.8 Assessment of Le 7.9 Summary References IV Artificial Intelligent Advances in SWIR Dee aura A. Sordillo and D 8.1 Introduction 8.2 Short-Wavelength 8.3 Deep Learning Ma 18.3.1 Overview 18.3.2 Popular D 8.4 Machine Learning 18.4.1 Machine I 18.4.2 Machine I 18.4.2 Machine I 18.5 Conclusion References	 16.4.2 Glucose monitoring techniques 16.4.2.1 Principles of spectral-domain differential-absorption low-coherence interferometry (SD-DA-LCI) 16.4.2.2 Theory of DA-based SD-LCI 16.4.3 Glucose monitoring using a supercontinuum laser source in the anterior chamber of a human eye model 6.5 Conclusion References WIR Imaging of Lesions on Tooth Surfaces Daniel Fried 7.1 Introduction 7.2 Optical Properties of Dental Hard Tissues and Lesion Contrast at SWIR Wavelengths 7.3 Detection of Caries Lesions on Proximal and Occlusal Surfaces 7.4 Detection of Caries Lesions and Dental Calculus on Root Surfaces 7.5 Detection of Secondary Caries 7.6 Characterization of Developmental Defects 7.7 Imaging Cracks in Teeth 7.8 Assessment of Lesion Activity 7.9 Summary References IV Artificial Intelligence Vardation and Diana C. Sordillo 8.1 Introduction 8.2 Short-Wavelength Infrared (SWIR) 8.3 Deep Learning Models 18.3.1 Overview of deep learning 18.3.2 Popular DL models in biophotonics 8.4 Machine Learning Techniques, SWIR, and Disease 18.4.1 Machine learning and SWIR 8.5 Conclusion

Preface

One of the most exciting, recent developments in photonics, particularly in regard to its use in medicine and disease, is the utilization of light at wavelengths beyond the visible range and the slightly longer range of short-wavelength infrared (SWIR) wavelengths at 1100–1350 nm, now known as the second optical window. Once ignored because of a lack of sensitive detectors, a third (at 1600–1870 nm) and a fourth (at 2100–2350 nm) optical window are now being utilized extensively. These wavelengths are situated at areas between water peak maxima (where absorption of light is reduced). Due to minimal absorption and scattering of light at these wavelengths, the use of these SWIR optical windows can provide less blurring, better-contrast images, and deeper penetration into tissue media compared with visible light.

With the use of these windows, extensive progress has been made in the study of diseases such as cancer, heart failure, neurocognitive disorders, and diseases of the bone, eyes, skin and teeth. In Part I of this book, investigators review new and emerging techniques based on SWIR light, including the fabrication and use of SWIR nanoparticles as luminescent nanothermometers and photothermal agents, and recent advances in the design, structure and SWIR-related biomedical applications of rare-earth doped nanoparticles (REDNs). REDNs are among the most exceptionally bright and biocompatible SWIR emitters. SWIR imaging techniques—including SWIR hyperspectral imaging for biomedical applications, and a novel wideband (VIS+SWIR) digital holographic microscopic method, based on a novel quantum-dot (QD) image sensor—are also discussed.

In Part II of this book, we explore biomedical applications that employ the SWIR optical windows for the assessment and detection of cancer. SWIR fluorescence and Monte Carlo modeling of breast cancer tissues can reveal important information on how SWIR light interacts with complex media. Recent advances in the study of urothelial carcinoma, a cancer that recurs frequently, are reviewed. SWIR light with multimodal microscopy can be utilized as a minimally invasive diagnostic technique for evaluation of this cancer. Investigators also show how SWIR light can be coupled with fluorescence endoscopy for tumor imaging, and how the assessment of gastrointestinal stromal tumors during surgery can be made using SWIR hyperspectral imaging. In Part III of this book, we discuss biomedical applications of SWIR light in important diseases of the heart, brain, skin, and other organs. SWIR light can be utilized in the assessment of heart failure and to access difficult-toreach areas of the brain. Investigators use SWIR imaging techniques to evaluate neurocognitive disorders and skin inflammation. SWIR light can also be employed using an otoscope to assess pediatric conditions, and with optical coherence tomography and other imaging modalities in dentistry.

Finally, Part IV provides a discussion of how artificial intelligence and machine learning can greatly enhance our ability to use SWIR windows to detect and study disease.

Acknowledgments

We would like to thank Ms. Dara Burrows, SPIE Press Senior Editor, for her invaluable help in preparing this book. We would also particularly like to acknowledge Ms. Diana C. Sordillo, M.S., who not only co-authored a chapter, but also made valuable notes and recommendations throughout the book. Finally, we would also like to thank Mr. Vincent T. Sordillo for his technical help, and especially Mrs. Ellen R. Sordillo, M.P.A., for her support.

Laura A. Sordillo, M.S., M.Phil., Ph.D. Peter P. Sordillo, M.D., Ph.D., M.S. December 2021

Laura A. Sordillo, M.S., M.Phil., Ph.D. is an interdisciplinary researcher in optics and biophotonics whose work focuses on the discovery of novel shortwavelength infrared techniques for deep tissue imaging of the brain, bone and breast cancer, the use of spectroscopy for the assessment of neurodegenerative diseases such as Parkinson's and Alzheimer's, as well as of cancer, and the study of quantum effects in the brain and in photosynthetic systems. She is currently investigating the application of photonics to quantum computing. She is Director of Biophotonics at Allosteric Bioscience, Inc. and is a research assistant professor at The Institute for Ultrafast Spectroscopy and Lasers in the physics and electrical engineering departments at The City College of New York. She is the recipient of the Kaylie Entrepreneur Award, the MSKCC-CCNY Graduate Research Award, the 2016-2017 Grove School of Engineering Graduate Fellowship, the 2017–2018 Corning Inc. Ph.D. Fellowship Award, and the 2018–2019 Corning Inc. Ph.D. Fellowship Award. She has published more than 60 papers, holds 13 patents, and is coeditor (along with Dr. Peter P. Sordillo M.D., Ph.D., M.S.) of the recently published book Biophotonics, Tryptophan and Disease from Elsevier/ Academic Press.

Peter P. Sordillo, M.D., Ph.D., M.S. is a physician and cancer researcher whose specialty is the treatment of extremely rare cancers. In addition to his M.D., he holds three graduate degrees in philosophy (causality) (Columbia University), and a graduate degree in physics (New York University). He is Vice-President and Chief Scientific Officer at SignPath Pharma Inc., a biotechnology company; Attending Physician in Medical Oncology, Hematology and Internal Medicine at Lenox Hill Hospital in New York City; and research consultant at The Institute for Ultrafast Spectroscopy and Lasers, Physics Department, The City College of the City University of New York, USA. He has published more than 190 papers, holds 15 patents, and is coeditor (along with Laura A. Sordillo, M.S., M.Phil., Ph.D.) of the recently published book *Biophotonics, Tryptophan and Disease* from Elsevier/Academic Press.

Contributors

Guillermo Aguilar

University of California, Riverside, United States and Texas A&M University, College Station, United States

Francisco Balea-Fernández

Universidad de Las Palmas de Gran Canaria, Spain

Mikhail Y. Berezin Washington University School of Medicine, St. Louis, United States

Gustavo M. Callico Universidad de Las Palmas de Gran Canaria, Spain

Santiago Camacho-López

Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico

Joan Josep Carvajal Universitat Rovira i Virgili, Tarragona, Spain

Gabriel R. Castillo

Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico and Universidad Nacional Autónoma de México, Ensenada, Mexico

Gustavo Castro-Olvera

The Barcelona Institute of Science and Technology, Castelldefels, Spain

Emilio Catelli

University of Bologna, Ravenna Campus, Italy and Norwegian University of Science and Technology, Trondeim, Norway

Zhen Cheng

Stanford University, Stanford, United States

Roger Chiu

Universidad de Guadalajara, Lagos de Moreno Jalisco, México

Antonio Cisneros-Martínez

Instituto Nacional de Astrofísica, Óptica, y Electrónica, Tonantzintla, México

Beatriz Coyotl-Ocelotl Instituto Nacional de Astrofísica,

Óptica, y Electrónica, Tonantzintla, México

Vani Damodaran Indian Institute of Technology Madras, India

Marlena B. Darr

Chemimage Corporation, Pittsburgh, United States

Nami Davoodzadeh

University of California, Riverside, United States

Himar Fabelo Universidad de Las Palmas de Gran Canaria, Spain

Daniel Fried University of California, San Francisco, School of Dentistry

Mauro Gacci University of Florence, Florence, Italy

Epimitheas Georgitzikis Imec—Interuniversity Microelectronics Center, Leuven, Belgium

David L. Halaney University of California, Riverside, United States

Abian Hernandez Universidad de Las Palmas de Gran Canaria, Spain

Julio Hernández HySpex and Norsk Elektro Optikk AS, Oslo, Norway

Juan A. Hernández-Cordero Universidad Nacional Autónoma de México, Ciudad de México, Mexico

Tatsuto Iida Maebashi Institute of Technology, Maebashi, Japan

Hiroaki Ikematsu National Cancer Center, Kawisha, Japan and National Cancer Center Hospital East, Kawisha, Japan

Sebastián Jarabo Zaragoza University, Spain Murali Jayapala Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Takashi Jin RIKEN Center for Biosystems Dynamics Research, Suita, Japan and Osaka University, Osaka, Japan

Pauline John Indian Institute of Technology Madras, India

Joo Hyoung Kim Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Shunsuke Kiya Maebashi Institute of Technology, Maebashi, Japan

Kosuke Kubota Maebashi Institute of Technology, Maebashi, Japan

Andy Lambrechts Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Jiwon Lee Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Yu-Jin Lee Stanford University, Stanford, United States

Raquel Leon Universidad de Las Palmas de Gran Canaria, Spain

Andrea Liaci University of Florence, Florence, Italy

Contributors

Ziduo Lin Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Hongguang Liu

Northeastern University, Shenyang, China

Pablo Loza-Alvarez

The Barcelona Institute of Science and Technology, Castelldefels, Spain

Zhenxiang Luo

Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Pawel Malinowski Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Simone Morselli University of Florence, Florence, Italy

Nirvikalpa Natarajan Stanford University, Stanford, United States

Matthew Nelson Chemimage Corporation, Pittsburgh, United States

Albenc Nexha Universitat Rovira i Virgili, Tarragona, Spain

Rosella Nicoletti University of Florence, Florence, Italy

Yasutomo Nomura Maebashi Institute of Technology, Maebashi, Japan and RIKEN Center for Biosystems Dynamics Research, Suita, Japan

Samuel Ortega

Universidad de Las Palmas de Gran Canaria, Spain and Nofima—The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway

Vladimir Pejovic

Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Mark C. Pierce

Rutgers—The State University of New Jersey, Piscataway, USA

Anahita Pilvar Boston University, Boston, USA

J. Christopher Post Chemimage Corporation, Pittsburgh, United States

Maria Cinta Pujol Universitat Rovira i Virgili, Tarragona, Spain

México

Julio C. Ramírez-San-Juan Instituto Nacional de Astrofísica, Óptica, y Electrónica, Tonantzintla,

Rubén Ramos-García Instituto Nacional de Astrofísica, Óptica, y Electrónica, Tonantzintla, México

Lise Lyngsnes Randeberg Norwegian University of Science and Technology, Trondheim, Norway

Darren Roblyer Boston University, Boston USA

Francisco J. Salgado-Remacha University of Zaragoza, Spain Ana Sánchez-Cano Zaragoza University, Spain

Robert C. Schweitzer Chemimage Corporation, Pittsburgh, United States

Akitoshi Seiyama Maebashi Institute of Technology, Maebashi, Japan

Sergio Serni University of Florence, Florence, Italy

Yang Sheng Changzhou University, Changzhou, China

Leonid Shmuylovich Washington University School of Medicine, St. Louis, United States

Aaron G. Smith Chemimage Corporation, Pittsburgh, United States

Kohei Soga Tokyo University of Science, Noda, Japan

Diana C. Sordillo Vanderbilt University, Nashville, United States

Laura A. Sordillo Allosteric Bioscience, Inc., United States

Shona Stewart Chemimage Corporation, Pittsburgh, United States

Yongkuan Suo Northeastern University, Shenyang, China **Toshihiro Takamatsu** Tokyo University of Science, Noda, Japan and National Cancer Center, Kashiwa, Japan

Hiroshi Takemura Tokyo University of Science, Noda, Japan

Mei Chee Tan Singapore University of Technology and Design, Singapore

Patrick J. Treado Chemimage Corporation, Pittsburgh, United States

Tulio A. Valdez Stanford University, Stanford, United States

Nilesh J. Vasa Indian Institute of Technology Madras, India

Geert Vanmeerbeeck Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Hideo Yokota RIKEN Center for Advanced Photonics, Wako, Japan

Abdulkadir Yurt Imec—Interuniversity Microelectronics Center, Leuven, Belgium

Yanyu Zhao Beihang University, Beijing, China

Zhenghuan Zhao Chongqing Medical University, Chongqing, China

Acronyms and Abbreviations

ACD	allergic contact dermatitis
AD	Alzheimer's disease
ADMM	alternating direction method of multipliers
AI	artificial intelligence
ANN	artificial neural network
AOM	acute otitis media
AOTF	acousto-optic tunable filter
AUC	area under the ROC curve
AuNP	gold nanoparticle
AuNS	gold nanostar
BAT	brown adipose tissue
BCa	bladder cancer
BLI	blue laser imaging
BOR	band outlier removal
CAPAD	current-activated, pressure-assisted densification
CARS	coherent anti-Stokes Raman scattering
CCD	charge-coupled device
CDR	clinical dementia rating
CEJ	cementum-enamel junction
CGM	continuous glucose monitoring
CHF	congestive heart failure
CIS	carcinoma in situ
CLSM	confocal laser scanning microscopy
CMOS	complimentary metal-oxide-semiconductor
CNN	convolutional neural network
CNP	carbon nanoparticle
CP	cross polarization
CPT	current procedural terminology
CSF	cerebrospinal fluid
CSNT	core/satellite nanotheranostic
CSOM	chronic suppurative otitis media
CT	computed tomography

CV	cross-validation
CW	continuous wave
CVI	CardioVerification index
DA	differential absorption
DC	downconversion
DEJ	dentinal-enamel junction
DL	deep learning
DLW	direct laser writing
DMD	digital micromirror device
DMSA	dimercapto succinic acid
DOS	diffuse optical spectroscopy
DOSI	diffuse optical spectroscopy imaging
DPBF	diphenylisobenzofuran
DS	down-shifting
DSM-5	Diagnostic and Statistical Manual of Mental Disorders
DTTA	diethylenetriamine tetraacetic acid
EDFA	erbium-doped fiber amplifier
EDTA	ethylenediaminetetraacetic acid
EPR	enhanced permeability and retention
EQE	external quantum efficiency
ESA	excited-state absorption
ESD	endoscopic submocusal dissection
ETU	energy transfer upconversion
FA	folic acid
FCN	fully convolutional network
FD	frequency domain
FDA	U.S. Food and Drug Administration
FDPM	frequency-domain photon migration
ffLDPI	full-field laser Doppler perfusion imaging
FIR	far infrared
FN	false negative
FOM	figure of merit
FP	false positive
FPR	false positive rate
FWHM	full width at half maximum
GAN	generative adversarial network
GIST	gastrointestinal stromal tumor
GRIN	graded index
Hb	hemoglobin
HF	heart failure
HIPPA	Health Insurance Portability and Accountability Act
HNLF	highly nonlinear fiber
HS	hyperspectral

HSI	hyperspectral imaging
ICG	indocyanine green
ICGVA	indocyanine green video angiography
IEE	image-enhanced endoscopy
IFT	inverse Fourier transform
IIR	intermediate infrared
IKSFA	iterative key set factor analysis
ILSVRC	ImageNet Large Scale Visual Recognition Challenge
IONP	iron oxide nanoparticle
IOS	inorganic shell
IQR	interquartile range
IR	infrared
IT	integration time
KNN	K-nearest neighbors
LCI	low-coherence interferometry
LCTF	liquid crystal tunable filter
LED	light-emitting diode
LFI	lens-free imaging
LP	long pass
LSCI	laser speckle contrast imaging
LSI	laser speckle imaging
LSTCA	laser speckle temporal contrast analysis
LV	latent variable
LWIR	long-wave infrared
MCF	multiconjugate filter
MCI	molecular chemical imaging
MCML	Monte Carlo multilayer (model)
MCT	mercury cadmium telluride, HgCdTe
MCVM	Monte Carlo (model in) voxelized media
MDA-MB-231	cell line for epithelial human breast cancer
MEE	middle ear effusion
MIR	mid-wave infrared
ML	machine learning
MLP	multilayer perceptron
MNDC	major neurocognitive disease
mNDC	minor neurocognitive disease
MNF	minimum noise fraction
MPI	meso-patterned imaging
MRI	magnetic resonance imaging
MSI	multispectral imaging
MSOT	multispectral optoacoustic tomography
MWIR	midwave infrared
NA	numerical aperture

NADH	nicotinamide adenine dinucleotide + hydrogen
NBI	narrow-band imaging
NC (or nc)	nanocrystal
NCD	neurocognitive disorder
NIR	near infrared
NIRS	near-infrared spectroscopy
NOR	no outlier removal
NP	nanoparticle
OA	osteoarthritis
OCA	optical clearing agent
OCS	optically cleared scalp
OCT	optical coherence tomography
OD	optical density
OM	otitis media
OME	otitis media with effusion
OPA	orthogonal projection approach
OS	organic shell
OSA	optical spectrum analyzer
PA	photoacoustic
PAA	polyacrylic acid
PAI	photoacoustic imaging
PAM	photoacoustic microscopy
PBM	photobiomodulation
PBS	phosphate-buffered saline
PC	principal component
PCA	principal component analysis
PCR	principal component regression
PD	photodiode
PDMS	polydimethylsiloxane
PDT	photodynamic therapy
PE	peripheral edema
PEG	polyethylene glycol
PEI	polyethylenimine
PET	positron emission tomography
PG	propylene glycol
PL	photoluminescence
PLGA	poly(lactic-co-glycolic) acid
PLM	polarized light microscopy
PLS	partial least-squares
PLSDA	partial least-squares discriminant analysis
PLSR	partial least-squares regression
PMLRL	passive mode-locked ring laser
PS	polarization sensitive

PT	photothermal
PTA	percutaneous ablation
PTT	photothermal therapy
QD	quantum dot
QDPD	quantum dot photodiode
QLF	quantitative light-induced fluorescence
QOC	questionable occlusal carious lesion
QWP	quarter-wave plate
RCM	reflectance confocal microscopy
RE	rare earth
REDN	rare-earth doped nanoparticle
ReLU	rectified linear unit
ResNet	residual network
RF	random forest
RGB	red-blue-green
RMSE	root mean-square error
RMSEP	root mean-square error prediction
RPM	remote patient monitoring
RNS	reactive nitrogen species
ROC	receiver operating characteristic
ROI	region of interest
ROS	reactive oxygen species
RT	radiotherapy
SBN	signal-to-background-noise ratio
SC	supercontinuum
SCG	supercontinuum generator
SD	spectral domain
SD	standard deviation
SFDI	spatial frequency domain imaging
SFI	speckle flow index
SHG	second-harmonic generation
SIA	spectrophotometric intracutaneous analysis
SIMPLISMA	simple-to-use interactive self-modeling analysis
SLED	superluminescent light-emitting diode
SLM	spatial light modulator
SMF	single-mode fiber
SNR	signal-to-noise ratio
SNV	standard normal variate
SOR	signature outlier removal
SPECT	single-photon emission computed tomography
SPI	single-pixel imaging
SRH	stimulated Raman histology
SS	swept source

SSS	superior sagittal sinus
S/V	surface-area-to-volume ratio
SVM	support vector machine
SVM-L	SVM classifier with a linear kernel
SWIR	short-wave infrared
SWNT	single-walled (carbon) nanotube
TCC	transitional cell carcinoma
TD	time domain
TEI	tissue erythema index
TEM	transmission electron microscopy
TFI	tissue fluid index
THG	third-harmonic generation
TM	transmission metal
TMR	transverse microradiography
TN	true negative
TOW	tissue optical window
TP	true positive
TPEF	two-photon excited fluorescence
TPR	true positive rate
TURBT	transurethral resection (of the) bladder tumor
UC	upconversion
UC	urothelial carcinoma
UCL	upconversion photoluminescence
UCNP	upconversion nanoparticle
US	ultrasound
UTUC	urinary tract urothelial carcinoma
UV	ultraviolet
VHP	Visible Human Project
VIS	visible portion of the spectral range
VIS-NIR	visible near infrared
VNIR	visible and near infrared
VPR	valley-to-peak ratio
VVMS	VeroVision [®] mail screener
WD	working distance
WttB	"window to the brain"
YSZ	yttria-stabilized zirconia
ZBLAN	zirconium barium lanthanum aluminum sodium fluoride