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Preface

One of the most exciting, recent developments in photonics, particularly in
regard to its use in medicine and disease, is the utilization of light at
wavelengths beyond the visible range and the slightly longer range of short-
wavelength infrared (SWIR) wavelengths at 1100–1350 nm, now known as the
second optical window. Once ignored because of a lack of sensitive detectors,
a third (at 1600–1870 nm) and a fourth (at 2100–2350 nm) optical window are
now being utilized extensively. These wavelengths are situated at areas
between water peak maxima (where absorption of light is reduced). Due to
minimal absorption and scattering of light at these wavelengths, the use of
these SWIR optical windows can provide less blurring, better-contrast images,
and deeper penetration into tissue media compared with visible light.

With the use of these windows, extensive progress has been made in the
study of diseases such as cancer, heart failure, neurocognitive disorders, and
diseases of the bone, eyes, skin and teeth. In Part I of this book, investigators
review new and emerging techniques based on SWIR light, including the
fabrication and use of SWIR nanoparticles as luminescent nanothermometers
and photothermal agents, and recent advances in the design, structure and
SWIR-related biomedical applications of rare-earth doped nanoparticles
(REDNs). REDNs are among the most exceptionally bright and biocompati-
ble SWIR emitters. SWIR imaging techniques—including SWIR hyperspec-
tral imaging for biomedical applications, and a novel wideband (VISþSWIR)
digital holographic microscopic method, based on a novel quantum-dot (QD)
image sensor—are also discussed.

In Part II of this book, we explore biomedical applications that employ
the SWIR optical windows for the assessment and detection of cancer. SWIR
fluorescence and Monte Carlo modeling of breast cancer tissues can reveal
important information on how SWIR light interacts with complex media.
Recent advances in the study of urothelial carcinoma, a cancer that recurs
frequently, are reviewed. SWIR light with multimodal microscopy can be
utilized as a minimally invasive diagnostic technique for evaluation of this
cancer. Investigators also show how SWIR light can be coupled with
fluorescence endoscopy for tumor imaging, and how the assessment of
gastrointestinal stromal tumors during surgery can be made using SWIR
hyperspectral imaging.
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In Part III of this book, we discuss biomedical applications of SWIR light
in important diseases of the heart, brain, skin, and other organs. SWIR light
can be utilized in the assessment of heart failure and to access difficult-to-
reach areas of the brain. Investigators use SWIR imaging techniques to
evaluate neurocognitive disorders and skin inflammation. SWIR light can
also be employed using an otoscope to assess pediatric conditions, and with
optical coherence tomography and other imaging modalities in dentistry.

Finally, Part IV provides a discussion of how artificial intelligence and
machine learning can greatly enhance our ability to use SWIR windows to
detect and study disease.
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Acronyms and Abbreviations

ACD allergic contact dermatitis
AD Alzheimer’s disease
ADMM alternating direction method of multipliers
AI artificial intelligence
ANN artificial neural network
AOM acute otitis media
AOTF acousto-optic tunable filter
AUC area under the ROC curve
AuNP gold nanoparticle
AuNS gold nanostar
BAT brown adipose tissue
BCa bladder cancer
BLI blue laser imaging
BOR band outlier removal
CAPAD current-activated, pressure-assisted densification
CARS coherent anti-Stokes Raman scattering
CCD charge-coupled device
CDR clinical dementia rating
CEJ cementum–enamel junction
CGM continuous glucose monitoring
CHF congestive heart failure
CIS carcinoma in situ
CLSM confocal laser scanning microscopy
CMOS complimentary metal–oxide–semiconductor
CNN convolutional neural network
CNP carbon nanoparticle
CP cross polarization
CPT current procedural terminology
CSF cerebrospinal fluid
CSNT core/satellite nanotheranostic
CSOM chronic suppurative otitis media
CT computed tomography
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CV cross-validation
CW continuous wave
CVI CardioVerification index
DA differential absorption
DC downconversion
DEJ dentinal–enamel junction
DL deep learning
DLW direct laser writing
DMD digital micromirror device
DMSA dimercapto succinic acid
DOS diffuse optical spectroscopy
DOSI diffuse optical spectroscopy imaging
DPBF diphenylisobenzofuran
DS down-shifting
DSM-5 Diagnostic and Statistical Manual of Mental Disorders
DTTA diethylenetriamine tetraacetic acid
EDFA erbium-doped fiber amplifier
EDTA ethylenediaminetetraacetic acid
EPR enhanced permeability and retention
EQE external quantum efficiency
ESA excited-state absorption
ESD endoscopic submocusal dissection
ETU energy transfer upconversion
FA folic acid
FCN fully convolutional network
FD frequency domain
FDA U.S. Food and Drug Administration
FDPM frequency-domain photon migration
ffLDPI full-field laser Doppler perfusion imaging
FIR far infrared
FN false negative
FOM figure of merit
FP false positive
FPR false positive rate
FWHM full width at half maximum
GAN generative adversarial network
GIST gastrointestinal stromal tumor
GRIN graded index
Hb hemoglobin
HF heart failure
HIPPA Health Insurance Portability and Accountability Act
HNLF highly nonlinear fiber
HS hyperspectral

xxiv Acronyms and Abbreviations



HSI hyperspectral imaging
ICG indocyanine green
ICGVA indocyanine green video angiography
IEE image-enhanced endoscopy
IFT inverse Fourier transform
IIR intermediate infrared
IKSFA iterative key set factor analysis
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IONP iron oxide nanoparticle
IOS inorganic shell
IQR interquartile range
IR infrared
IT integration time
KNN K-nearest neighbors
LCI low-coherence interferometry
LCTF liquid crystal tunable filter
LED light-emitting diode
LFI lens-free imaging
LP long pass
LSCI laser speckle contrast imaging
LSI laser speckle imaging
LSTCA laser speckle temporal contrast analysis
LV latent variable
LWIR long-wave infrared
MCF multiconjugate filter
MCI molecular chemical imaging
MCML Monte Carlo multilayer (model)
MCT mercury cadmium telluride, HgCdTe
MCVM Monte Carlo (model in) voxelized media
MDA-MB-231 cell line for epithelial human breast cancer
MEE middle ear effusion
MIR mid-wave infrared
ML machine learning
MLP multilayer perceptron
MNDC major neurocognitive disease
mNDC minor neurocognitive disease
MNF minimum noise fraction
MPI meso-patterned imaging
MRI magnetic resonance imaging
MSI multispectral imaging
MSOT multispectral optoacoustic tomography
MWIR midwave infrared
NA numerical aperture
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NADH nicotinamide adenine dinucleotideþ hydrogen
NBI narrow-band imaging
NC (or nc) nanocrystal
NCD neurocognitive disorder
NIR near infrared
NIRS near-infrared spectroscopy
NOR no outlier removal
NP nanoparticle
OA osteoarthritis
OCA optical clearing agent
OCS optically cleared scalp
OCT optical coherence tomography
OD optical density
OM otitis media
OME otitis media with effusion
OPA orthogonal projection approach
OS organic shell
OSA optical spectrum analyzer
PA photoacoustic
PAA polyacrylic acid
PAI photoacoustic imaging
PAM photoacoustic microscopy
PBM photobiomodulation
PBS phosphate-buffered saline
PC principal component
PCA principal component analysis
PCR principal component regression
PD photodiode
PDMS polydimethylsiloxane
PDT photodynamic therapy
PE peripheral edema
PEG polyethylene glycol
PEI polyethylenimine
PET positron emission tomography
PG propylene glycol
PL photoluminescence
PLGA poly(lactic-co-glycolic) acid
PLM polarized light microscopy
PLS partial least-squares
PLSDA partial least-squares discriminant analysis
PLSR partial least-squares regression
PMLRL passive mode-locked ring laser
PS polarization sensitive
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PT photothermal
PTA percutaneous ablation
PTT photothermal therapy
QD quantum dot
QDPD quantum dot photodiode
QLF quantitative light-induced fluorescence
QOC questionable occlusal carious lesion
QWP quarter-wave plate
RCM reflectance confocal microscopy
RE rare earth
REDN rare-earth doped nanoparticle
ReLU rectified linear unit
ResNet residual network
RF random forest
RGB red–blue–green
RMSE root mean-square error
RMSEP root mean-square error prediction
RPM remote patient monitoring
RNS reactive nitrogen species
ROC receiver operating characteristic
ROI region of interest
ROS reactive oxygen species
RT radiotherapy
SBN signal-to-background-noise ratio
SC supercontinuum
SCG supercontinuum generator
SD spectral domain
SD standard deviation
SFDI spatial frequency domain imaging
SFI speckle flow index
SHG second-harmonic generation
SIA spectrophotometric intracutaneous analysis
SIMPLISMA simple-to-use interactive self-modeling analysis
SLED superluminescent light-emitting diode
SLM spatial light modulator
SMF single-mode fiber
SNR signal-to-noise ratio
SNV standard normal variate
SOR signature outlier removal
SPECT single-photon emission computed tomography
SPI single-pixel imaging
SRH stimulated Raman histology
SS swept source
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SSS superior sagittal sinus
S/V surface-area-to-volume ratio
SVM support vector machine
SVM-L SVM classifier with a linear kernel
SWIR short-wave infrared
SWNT single-walled (carbon) nanotube
TCC transitional cell carcinoma
TD time domain
TEI tissue erythema index
TEM transmission electron microscopy
TFI tissue fluid index
THG third-harmonic generation
TM transmission metal
TMR transverse microradiography
TN true negative
TOW tissue optical window
TP true positive
TPEF two-photon excited fluorescence
TPR true positive rate
TURBT transurethral resection (of the) bladder tumor
UC upconversion
UC urothelial carcinoma
UCL upconversion photoluminescence
UCNP upconversion nanoparticle
US ultrasound
UTUC urinary tract urothelial carcinoma
UV ultraviolet
VHP Visible Human Project
VIS visible portion of the spectral range
VIS–NIR visible near infrared
VNIR visible and near infrared
VPR valley-to-peak ratio
VVMS VeroVision® mail screener
WD working distance
WttB “window to the brain”
YSZ yttria-stabilized zirconia
ZBLAN zirconium barium lanthanum aluminum sodium fluoride
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