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“Hope lies in dreams, in imagination and in the courage
of those who dare to make dreams into reality”

Jonas E. Salk (1914–1995)





Foreword

On March 17, 1958, Vanguard 1 was launched, becoming the fourth satellite to orbit the
Earth and the first to have solar electric power. With a mass just under 1.5 kilograms,
Vanguard 1 was also the first of what we would later come to know as nanosatellites,
unwittingly planting the seeds of a technological revolution that was still decades away
from fruition.

Today, we are fortunate to be able to look back on that momentous flight and
recognize its significance in the long arc of satellite development. Just as exciting is our
ability to look forward and dream of the untold advancements that await us.

Through the tireless efforts of scientists and engineers dating back to the early 1990s,
nanosatellites have steadily evolved from technology demonstration testbeds to practical
and commercially viable devices poised to form the backbone of many emerging space
architectures. Along the way, they’ve carved the path for countless innovations and served
as an accessible entry point for researchers, entrepreneurs, students, and others to begin
experimenting with satellites of their own.

This book, the fifth in a series on this subject, chronicles the progress and promise of
the nanosatellite revolution. It serves as a testament to the many great achievements that
have brought us to this place in history and offers a tantalizing glimpse of what’s still to
come. The pages ahead speak to the dedication and perseverance that have taken an initial
vision from 30 years ago and turned it into a reality benefitting the global space community.

The Aerospace Corporation is proud of the role its people have played in helping
shape and advance the nanosatellite revolution, and of our continued efforts to push the
state of the art for what nanosatellites can accomplish.

From Earth observation to communication to navigation, the possibilities of what can
be done on orbit by ever-smaller satellites are seemingly boundless. As launch costs continue
to drop, even more nanosatellites will take their place among the stars and the scale of their
impact will only multiply. And while this growth will lead to new challenges to overcome
and solutions to be developed, the nanosatellite community is more than up to the task.

The innovative spirit that has propelled the nanosatellite field forward for decades still
shines brightly. May it continue to serve as a beacon to all those seeking to advance
humankind and our place in the skies above.

Steve Isakowitz
President and CEO

The Aerospace Corporation
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Preface
“The Nanosatellite Revolution:
30 Years and Continuing”

This work assembles chapters from contributors across our planet to
document technologies, applications, missions, licensing requirements, and
lessons learned by individuals and organizations that have participated in the
nanosatellite revolution. This book is not intended as a “how to” or as a
university reference to design, build, and fly nanosatellites but as a deeper-
level reference on what has and hasn’t worked in previous nanosatellite
programs. Like our previous compendium, Small Satellites: Past, Present, and
Future, this book provides details on small-satellite efforts, in this case
nanosatellites, from the perspective of the individual chapter authors. Many
chapters act as a historical reference for particular programs. We realized that
some important efforts such as the outstanding nanosatellite work at the
NASA-Ames Research Center and in Russia and China were missing from
the previous book, so we solicited and received chapters on these efforts. Our
previous book was published in 2008, and we wanted to assemble an updated
work to cover new advancements in this exploding field. If you plot yearly
nanosatellite launch rates vs. launch year using a logarithmic scale on the
vertical launch rate axis, you will discover that a tsunami-like second wave of
nanosatellite launches started in 1997, with exponential growth that doubles
every 2.44 years. The graph, shown simplistically on the cover, validates the
use of the term “nanosatellite revolution.” Note that the 1997 start date was
determined by analyzing launch rates through 2022, and this could change by
a few years as we add more data each year.

This book is organized into four sections: a section on missions, a section
on technologies, a section on policy, and a final section on future perspectives.
In reality, nearly every contribution has elements relating to all three sections.
Mission investigations show that nanosatellites or CubeSats (synonymous to
us) have evolved from serving as technology demonstration testbeds to
providing practical and commercially useful data from space. Nanosatellites
were never intended to replace large satellites, except when used in
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constellations. Companies and governments will continue to permeate low
Earth orbit (LEO) with small, micro-, and nanosatellites to form mega-
constellations, and inadvertently increase the probability of accidental
collision between satellites and debris objects. The problem is further
exacerbated if a significant number of satellites arrive partially or totally
disabled on orbit. We believe that the future of nanosatellites remains positive
and that industry in collaboration with government organizations will self-
police to ensure safe access and operations in space. One radical approach to
actively reduce the density of �10-cm scale orbital-debris objects is given in
Chapter 24.

Nanosatellites were the first spacecraft the United States attempted to
launch in response to the former Soviet Union successfully orbiting the
Sputnik-1 and -2 microsatellites (10 to 100 kg mass). Unfortunately, the
Vanguard TV-3 and -TSG nanosatellites had launch failures. Explorer-1
became the first U.S satellite, a microsatellite, to reach orbit in 1958, followed
by the first U.S. nanosatellite, Vanguard-1. Satellites were launched by
government agencies, and the early flight success rate was miserable; only 55%
for the Soviet Union and 37% for the United States between October 1957 and
April 1960. Emphasis soon shifted to manned spaceflight, and satellite launch
masses grew considerably in the 1960s and 1970s as launch vehicles evolved in
reliability and throw-weight capability to support manned operations in LEO,
and then, in cis-lunar space.

From the start of the Space Age in 1957 through 1994, only 54 active
nanosatellites were launched, yielding a miniscule average launch rate of 1.42
nanosatellites per year. More than 500 passive nanosatellites were launched or
ejected on orbit, primarily by the Soviet Union, to reflect light or radio waves
to calibrate ground-based sensors and to monitor atmospheric density
through orbital decay, but these were just structures without any electronic
systems (e.g., energy conversion and storage, communications, command, and
control, etc.) required by a true satellite. The highest launch rate of eight
active nanosatellites per year occurred in 1965 and in 1967. After that,
nanosatellite launch rates declined rapidly and dropped to zero per year
between 1973 and 1989. Nanosatellites re-emerged in the 1990s with a meager
average active nanosatellite launch rate of 1.8 per year. No one noticed the
start of the nanosatellite revolution during the 1990s, or even through most of
the 2000s (2000–2009) with an average launch rate of only 3.3 per year. The
nanosatellite revolution started slowly, fueled by advancements in miniatur-
ized electronics and microelectromechanical systems for the consumer market,
small satellite flight experience gained by the Amateur Radio Satellite
Corporation (AMSAT, a not-for-profit organization dedicated to amateur
radio enthusiasts that had flown more than 45 small satellites, mostly
microsatellites, by the year 1997), and access to affordable space launch
opportunities using the truly revolutionary CubeSat containerized satellite
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concept that was born in Silicon Valley. The nanosatellite revolution started
in universities and government labs, but then spread to for-profit commercial
companies to provide game-changing services in LEO to a variety of civilian
and governmental customers. Planet Labs (now Planet) developed the
audacious plan of flying hundreds of CubeSats in LEO to provide 5-meter
ground resolution imagery, with daily revisit times, to anyone who would buy
the data. Entrepreneurs saw a new market, and new launch service providers
were born. The availability of launch on an almost monthly basis, from
multiple vendors to moderate cost, spurred the development of even more
nanosatellite service providers, resulting in hundreds of nanosatellites being
launched each year. Vive la révolution!

Our nanosatellite revolution started at The Aerospace Corporation when
three intrepid researchers (S. W. Janson, E. Y. Robinson, and H. Helvajian)
assembled a community of interest to study miniaturization technologies
prevailing at the time to reduce satellite mass. One output was the radical
concept of the kilogram-mass integrated-silicon nanosatellite formally
presented at the 1993 International Astronautics Federation Conference in
Graz, Austria. This was followed by four books and technical publications
that focused on miniaturization technologies, development of nanosatellite
concepts and technologies, and the presentation of results from small-satellite
missions—both successful and failed. The last work was an edited book, Small
Satellites: Past, Present, and Future, containing 24 chapters on small satellites
from U.S., Canadian, Japanese, German, Dutch, and British authors. This
new fifth work, and likely the last from these editors, continues our tradition
by documenting results from selected nanosatellite missions and technologies,
and governmental requirements to launch and fly missions. We expanded our
international coverage to include Russian, Chinese, and Singaporean authors,
and significantly expanded the gender diversity of our chapter authors.
Similar to our prior works, this book also reflects on the future to not only
identify driving technologies that will propel further advancement, but also to
highlight impending issues spawned by the nanosatellite revolution such as a
rapid increase in the orbital debris environment.

Nanosatellite and small-satellite capabilities will continue to increase over
time due to the continuing advances in radio frequency electronics,
microelectromechanical systems, photonics, power management and storage,
materials development, and the increasing computational processing and data
storage capabilities that can be put into a single square centimeter of silicon.
Many successful nanosatellite-based commercial space enterprises like Planet,
Spire, and Swarm are established or underway, and more are expected in the
near future. Nanosatellites initially enabled university-class researchers to
inexpensively build and fly space experiments, and now they also enable
entrepreneurs and venture capitalists to expand commercialism into LEO, and
beyond. The perseverance of nanosatellite researchers worldwide during the
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past 30 years has transformed imagination into practical reality. The quote
from Jonas Salk in the opening pages of this book serves as a gentle nod to
these dedicated researchers.

In conclusion, we make note of additional trends that are worth
observation. (1) The increasing sophistication that can be packaged in a
nanosatellite bus and the increasing capability of ride-sharing permit use of
nanosatellites as robotic probes that can be sent to explore our solar system
with far more detail than has been achieved to date, not only to planets, but to
moons and asteroids. (2) In a similar vein, nanosatellites can become the
mass-producible building blocks for assembling large argosies (a merchant
ship or fleet of merchant ships) in space: “the smart brick.” In fact, we predict
an era of space development that is enabled by self-assembly using smaller,
functional units.

Finally, we thank the authors who report in these pages—we thank them
for their contributions, their vision, and their perseverance. We know of many
more stories that confirm the utility of the nanosatellite as a viable space tool,
and we anticipate the next 25 to 30 years to be a watershed for nanosatellite
proliferation.

Henry Helvajian
Siegfried Janson

Editors
April 2023
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Dedication

In Memory of Ernest Y. Robinson

This book is dedicated to “Ernie” Robinson, a brilliant engineer and a real
“mensch” (a term from Middle High German and Yiddish meaning a person
of integrity and honor). Ernie Robinson worked for both NASA’s Jet
Propulsion Laboratory and The Aerospace Corporation in Southern
California. In the early 1990s, during a serendipitous meeting with the
current editors of this book, a trio formed that would begin to champion
perspectives that functional satellites of substantially smaller size could be
produced. Ernie was impassioned to advocate the concept with superhuman
commitment. Bob Twiggs, of Stanford University, was brought into the fold,
and then he developed the “killer app” CubeSat form factor. For over a
decade, three people at Aerospace, Ernie and the two editors of this book,
were mentors and mentees to each other. Ernie passed away since our last
book on small satellites, but we are sure he would smile every time a new small
satellite is launched into orbit or beyond. Thank you, Ernie.
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