Direct-Detection LADAR Systems

Tutorial Texts Series

- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Infrared Optics and Zoom Lenses, Second Edition, Allen Mann, Vol. TT83
- Optical Engineering Fundamentals, Second Edition, Bruce H. Walker, Vol. TT82
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry, Peter Saunders, Vol. TT78
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Third Edition, Herbert Kaplan, Vol. TT75
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Y. Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare, Sergio R. Restaino, Vol. TT73
- Logic-based Nonlinear Image Processing, Stephen Marshall, Vol. TT72
- The Physics and Engineering of Solid State Lasers, Yehoshua Kalisky, Vol. TT71
- Thermal Infrared Characterization of Ground Targets and Backgrounds, Second Edition, Pieter A. Jacobs, Vol. TT70
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuveer Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
- Diffractive Optics-Design, Fabrication, and Test, Donald C. O'Shea, Thomas J. Suleski, Alan D. Kathman, and Dennis W. Prather, Vol. TT62
- Fourier-Transform Spectroscopy Instrumentation Engineering, Vidi Saptari, Vol. TT61
- The Power- and Energy-Handling Capability of Optical Materials, Components, and Systems, Roger M. Wood, Vol. TT60
- Hands-on Morphological Image Processing, Edward R. Dougherty, Roberto A. Lotufo, Vol. TT59
- Integrated Optomechanical Analysis, Keith B. Doyle, Victor L. Genberg, Gregory J. Michels, Vol. TT58
- Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, Bruce Perilloux, Vol. TT57
- Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
- An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55
- Image Performance in CRT Displays, Kenneth Compton, Vol. TT54
- Introduction to Laser Diode-Pumped Solid State Lasers, Richard Scheps, Vol. TT53
- Modulation Transfer Function in Optical and Electro-Optical Systems, Glenn D. Boreman, Vol. TT52
- Uncooled Thermal Imaging Arrays, Systems, and Applications, Paul W. Kruse, Vol. TT51
- Fundamentals of Antennas, Christos G. Christodoulou and Parveen Wahid, Vol. TT50
- Basics of Spectroscopy, David W. Ball, Vol. TT49
- Optical Design Fundamentals for Infrared Systems, Second Edition, Max J. Riedl, Vol. TT48
- Resolution Enhancement Techniques in Optical Lithography, Alfred Kwok-Kit Wong, Vol. TT47
- Copper Interconnect Technology, Christoph Steinbrüchel and Barry L. Chin, Vol. TT46
- Optical Design for Visual Systems, Bruce H. Walker, Vol. TT45
- Fundamentals of Contamination Control, Alan C. Tribble, Vol. TT44
- Evolutionary Computation: Principles and Practice for Signal Processing, David Fogel, Vol. TT43
- Infrared Optics and Zoom Lenses, Allen Mann, Vol. TT42
- Introduction to Adaptive Optics, Robert K. Tyson, Vol. TT41

Direct-Detection LADAR Systems

Richard D. Richmond Stephen C. Cain

Tutorial Texts in Optical Engineering Volume TT85

Bellingham, Washington USA

Richmond, Richard D.
Direct-detection LADAR systems / Richard D. Richmond & Stephen C. Cain. p. cm. -- (Tutorial texts in optical engineering; v. TT85)
Includes bibliographical references and index.
ISBN 978-0-8194-8072-9 (alk. paper)
Optical radar. I. Cain, Stephen C., 1969- II. Title.
TK6592.06R53 2009
621.3848--dc22

2009051442

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: books@spie.org Web: http://spie.org

Copyright © 2010 Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to more than 80 titles covering many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

> James A. Harrington Rutgers University

To my wife, Linda, who has always been my strongest supporter.

R.R.

To my wife, Karen, and kids, Asher, Josiah, and Tobias, who make all my days worth living.

S.C.

Contents

	Xİ
al Notation	xiii
Introduction to LADAR Systems	1
Background	1
LADAR and RADAR Fundamentals	1
1.2.1 Heterodyne versus direct detection	7
LADAR Range Equation	8
1.3.1 Laser transmitter models	8
1.3.2 Atmospheric transmission	10
1.3.3 Target reflectivity and angular dispersion	11
1.3.4 Dispersion upon reflection	12
1.3.5 LADAR receiver throughput and efficiency	14
Types of LADAR Systems and Applications	14
1.4.1 Three-dimensional-imaging LADAR systems	15
Sources of Noise in LADAR Systems	15
1.5.1 Photon counting noise	16
1.5.2 Laser speckle noise	16
1.5.3 Thermal noise	18
1.5.4 Background noise	18
LADAR Systems and Models	19
1.6.1 Computational model for the range equation and	
signal-to-noise ratio (SNR)	19
1.6.2 Avalanche photodiode	24
Problems	25
LADAR Waveform Models	27
Fourier Transform	27
2.1.1 Properties of the DFT	
2.1.1.1 Periodicity of the DFT	29
2.1.1.2 Time-shift property of the DFT	29
2.1.1.3 Convolution property of the DFT	29
2.1.2 Transforms of some useful functions	30
2.1.2.1 Transform of a Gaussian function	30
2.1.2.2 DFT of a rectangular shape	30
	Introduction to LADAR Systems Background LADAR and RADAR Fundamentals 1.2.1 Heterodyne versus direct detection LADAR Range Equation 1.3.1 Laser transmitter models 1.3.2 Atmospheric transmission 1.3.3 Target reflectivity and angular dispersion 1.3.4 Dispersion upon reflection 1.3.5 LADAR receiver throughput and efficiency Types of LADAR Systems and Applications 1.4.1 Three-dimensional-imaging LADAR systems Sources of Noise in LADAR Systems 1.5.1 Photon counting noise 1.5.2 Laser speckle noise 1.5.3 Thermal noise 1.5.4 Background noise LADAR Systems and Models

2.2	Laser Pulse Waveform Models	
	2.2.1 Gaussian pulse model	
	2.2.2 Negative parabolic pulse model	
	2.2.3 Hybrid pulse models	
	2.2.4 Digital waveform models	
2.3	Pulse/Target Surface Interaction Models	
2.4	LADAR System Clock Frequency and Ranging Error	45
2.5	Waveform Noise Models	45
2.0	2.5.1 Waveform noise sources introduced at the	
	single-sample level	46
	2.5.2 Sampling criteria and the effect of aliasing on	
	waveforms	48
2.6	Problems	52
2.0	1100101113	
Chapter 3	Wave Propagation Models	55
3 1	Rayleigh-Sommerfeld Propagation	57
3.2	Free-Space Propagation	58
33	Atmospheric Turbulence Phase Screen Simulation	69
3.4	I ADAR System Point Spread Function	
3.5	Problems	
5.5	1100101113	
Chapter 4	Detection and Estimation Theory Applied to LADA	R
	Signal Detection	
4.1	Simple Binary Hypothesis Testing	
4 2	Decision Criteria	92
43	Detection Methods Using Waveform Data	96
4 4	Receiver Operating Characteristics	101
4 5	Range Estimation	103
1.5	4.5.1 Peak estimator	104
	4.5.2 Cross-correlation range estimator	107
	453 Leading-edge detectors	112
16	Range Resolution and Range Accuracy	112 11/
4.0	Problems	115
4.7	1100101115	115
Chapter 5	I ADAR Imaging Systems	117
5.1	Single-Pixel Scanning Imagers	117
5 2	Gated Viewing Imagers	118
5.2	5.2.1 Design and modeling considerations	122
53	Staring or FLASH Imagers	122
5.5 5.1	Modeling 2D and 3D FL ASH I ADAR Systems	125
5.4 5.5	Speckle Mitigation for Imaging I ADAD Systems	120 1 2 0
3.3	Speckie witugation for miaging LADAK Systems	128
References		135
Index	,	137
	,	

Preface

The field of 3D LADAR (LAser Detection And Ranging) is growing steadily with new advances in focal plane readout technology driving ever-faster image capture and readout capabilities. This text is designed to introduce engineers to the basic concepts and operation of 3D imaging LADAR systems. The book facilitates the instruction of junior and senior year student engineers as well as graduate students who have a background in statistics and linear systems through a single-term course in LADAR systems. The book begins with the laser range equation and follows with discussions of sources of noise in LADAR signals, LADAR waveforms, the effects of wavefront propagation on LADAR beams through optical systems and atmospheric turbulence, algorithms for detecting, ranging, and tracking targets, and finally, comprehensive system simulation.

This book also provides computer code for accomplishing the many examples appearing throughout the text. Exercises at the end of each chapter allow students to apply concepts studied throughout the text to fundamental problems encountered by LADAR engineers. The exercises closely follow the examples so that guidance is available for successfully solving these problems. Students in both academia and industry can use the book as part of a formal course or a self study to acquire a basic understanding of LADAR systems. The book relates how to simulate realistic LADAR data as well as how to process it to extract target-related information.

Many thanks are due to Karen Cain, who provided many of the illustrations found in Chapter 1. Thanks are also due to both Karen and Asher Cain, who aided in the initial editing of the text.

Mathematical Notation

α	tilt in the horizontal direction caused by atmospheric turbulence
A	aperture transmittance function
A_g	amplitude of a Gaussian beam
β	tilt in the vertical direction caused by atmospheric turbulence
B	average number of photoelectrons contributed by the background
С	speed of light in a vacuum
С	capacitance of the detector circuit in Farads (F)
Δ	size of the LADAR receiver detector in meters (m)
Δ_{v}	sample size in the source plane of an optical field in meters (m)
Δ_x	sample size in the distant plane of an optical field in meters (m)
Δ_{det}	sample size in the detector plane dictated by propagation rules
Δ_{λ}	passband width of the background rejection filter in microns (µm)
Δt	detector integration time
dA	effective target surface area
D	total number of photoelectrons collected by a LADAR system
D_{lpha}	horizontal tilt structure function
D_B	number of photoelectrons contributed by the background
$D_{ heta}$	phase structure function
D_s	number of photoelectrons contributed by the laser pulse
D_t	diameter of the aperture of the LADAR transmitter optics
D_R	diameter of the aperture of the LADAR receiver optics
f	frequency in Hertz (Hz)
f_c	maximum spatial frequency of an optical field in inverse meters
f_l	focal length of the LADAR receiver optics
f_o	fundamental frequency of the discrete Fourier transform in Hertz (Hz)
γ	angular field of view of the LADAR receiver
G_{apd}	avalanche photodiode gain
η	quantum efficiency of the LADAR detector
h	Planck's constant
h_{tot}	point spread function of the LADAR system
H_{atm}	atmospheric transfer function
H_{det}	detector transfer function
П _{орt} И	optical transfer function the Equation transform of L
Π_{tot}	total system transfer function, the Fourier transform of N_{tot}
V	frequency of the laser light in Hertz (HZ)

V_{x}	horizontal wind speed across the LADAR receiver aperture
V_y	vertical wind speed across the LADAR receiver aperture
Itarget	intensity of the LADAR beam at the target in watts per square meter
	(W/m^2)
Ireceiver	intensity of the returned pulse at the receiver aperture in watts per square
	meter (W/m^2)
k_b	Boltzmann's constant
K	number of photons incident on the LADAR detector
λ	wavelength of the laser light processed by the LADAR system
Λ	likelihood ratio test
L_r	size of an optical field in the distant plane in meters (m)
L_s	size of an optical field in the source plane in meters (m)
М	coherence parameter; large for incoherent light, 1 for fully coherent
N	index of refraction of the atmosphere
n _{sr}	average index of refraction of the atmosphere along a path
Δn	perturbation in the index of refraction about the average value
Nsignal	number of electrons measured by the LADAR system
N_b	number of electrons measured by the LADAR system due to background
N _{dark}	number of electrons contributed by the detector dark current
$N_{speckle}$	number of electrons measured by the LADAR system with speckle noise
$N_{thermal}$	number of noise electrons contributed by thermal noise effects
P_d	probability of detection
P_{fa}	probability of false alarm
P_{det}	total laser power incident on the LADAR detector in watts (W)
P_{det_diff}	laser power incident on the LADAR detector with diffraction effects
P_{det_tot}	geometrically predicted laser power incident on the LADAR detector
P_{ref}	total reflected laser power from the target in watts (W)
P_t	transmitted laser power in watts (w)
p_w	pulse width parameter for the negative parabola model in seconds (s)
q_e	readout poise standard deviation in cleatrons (a.u.)
Q_n	terrest surface reflectivity
ρ_t	Eriod's social percentation continuators (cm)
r _o AD	distance between two surfaces viewed by a LADAP system
$\Delta \Lambda$ P	range between the laser RADAR system and the target
R.	range between the LADAR system and the first target in a two-target
R _I	case
R_{2}	range between the LADAR system and a second target in a two-target
n ₂	case
R_{ff}	range from the LADAR system that the far-field approximation is valid
R_{θ}	phase correlation function
R_{α}	horizontal tilt correlation function
R_{β}	vertical tilt correlation function
σ_{α}	standard deviation of the tilt in the horizontal direction
-u	

standard deviation of the tilt in the vertical direction $\sigma_{\!\beta}$ photo-current standard deviation in amperes (A) σ_{pc} photon standard deviation due to photon counting noise and laser speckle $\sigma_{speckle}$ pulse width parameter for the Gaussian pulse model in seconds (s) σ_w S average number of photoelectrons contributed by the laser pulse background intensity in watts per square meter (W/m^2) S_{IR} difference in the time of flight between two surfaces at ranges R_1 and R_2 τ atmospheric transmission τ_a LADAR receiver optics transmission τ_o time of flight in seconds (s) through a vacuum t change in the time of flight due to changes in index of refraction t_{Δ} lens transmittance function including optical delays tiens time of flight in seconds (s) through an atmospheric path with no t_o turbulence time of flight in seconds (s) through the atmosphere t_{sr} crcuit temperature in Kelvin (K) Т T_p target profile: the surface area of the target as a function of range time of flight in nanoseconds (ns) t_{ns} phase error introduced by atmospheric turbulence θ_{atm} target surface angular dispersion in steradians (sr) θ_R beamwidth of the LADAR transmitter in radians (rad) θ_t beam waist parameter for the Gaussian beam ω_{o} Ζ distance between the target plane and the plane of the LADAR aperture