Field Guide to

Probability, Random Processes, and Random Data Analysis

Larry C. Andrews Ronald L. Phillips

SPIE Field Guides Volume FG22

John E. Greivenkamp, Series Editor

Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

Andrews, Larry C.
Field guide to probability, random processes, and random data analysis / Larry C. Andrews, Ronald L. Phillips.
p. cm. – (Field guide series)
Includes bibliographical references and index.
ISBN 978-0-8194-8701-8
1. Mathematical analysis. 2. Probabilities. 3. Random data (Statistics) I. Phillips, Ronald L. II. Title.
QA300.A5583 2012
519.2–dc23

2011051386

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1.360.676.3290 Fax: +1.360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

First Printing

Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The *SPIE Field Guides* are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at **fieldguides@SPIE.org**.

John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona

Field Guide to Probability, Random Processes, and Random Data Analysis

Keep information at your fingertips with all of the titles in the Field Guide Series:

Field Guide to

- Adaptive Optics, Robert Tyson & Benjamin Frazier
- Atmospheric Optics, Larry Andrews
- Binoculars and Scopes, Paul Yoder, Jr. & Daniel Vukobratovich
- Diffractive Optics, Yakov G. Soskind
- Geometrical Optics, John Greivenkamp
- Illumination, Angelo Arecchi, Tahar Messadi, & John Koshel
- Infrared Systems, Detectors, and FPAs, Second Edition, Arnold Daniels
- Interferometric Optical Testing, Eric Goodwin & Jim Wyant

Laser Pulse Generation, Rüdiger Paschotta

Lasers, Rüdiger Paschotta

Microscopy, Tomasz Tkaczyk

Optical Fabrication, Ray Williamson

Optical Fiber Technology, Rüdiger Paschotta

Optical Lithography, Chris Mack

Optical Thin Films, Ronald Willey

Polarization, Edward Collett

Radiometry, Barbara Grant

Special Functions for Engineers, Larry Andrews

Spectroscopy, David Ball

Visual and Ophthalmic Optics, Jim Schwiegerling

Field Guide to Probability, Random Processes, and Random Data Analysis

Developed in basic courses in engineering and science, mathematical theory usually involves deterministic phenomena. Such is the case for solving a differential equation that describes a linear system where both input and output are deterministic quantities. In practice, however, the input to a linear system, such as imaging or radar systems, can contain a "random" quantity that yields uncertainty about the output. Such systems must be treated by probabilistic rather than deterministic methods. For this reason, probability theory and random-process theory have become indispensable tools in the mathematical analysis of these kinds of engineering systems.

Topics included in this *Field Guide* are basic probability theory, random processes, random fields, and random data analysis. The analysis of random data is less well known than the other topics, particularly some of the tests for stationarity, periodicity, and normality.

Much of the material is condensed from the authors' earlier text *Mathematical Techniques for Engineers and Scientists* (SPIE Press, 2003). As is the case for other volumes in this series, it is assumed that the reader has some basic knowledge of the subject.

Larry C. Andrews Professor Emeritus Townes Laser Institute CREOL College of Optics University of Central Florida

Ronald L. Phillips Professor Emeritus Townes Laser Institute CREOL College of Optics University of Central Florida

Table of Contents

Glossary of Symbols and Notation		
Probability: One Random Variable	1	
Terms and Axioms	2	
Random Variables and Cumulative		
Distribution	3	
Probability Density Function	4	
Expected Value: Moments	5 6	
Example: Expected Value	6	
Expected Value: Characteristic Function	7	
Gaussian or Normal Distribution		
Other Examples of PDFs: Continuous RV	9	
Other Examples of PDFs: Discrete RV	12	
Chebyshev Inequality	13	
Law of Large Numbers	14	
Functions of One RV	15	
Example: Square-Law Device	16	
Example: Half-Wave Rectifier	17	
Conditional Probabilities	18	
Conditional Probability: Independent Events	19	
Conditional CDF and PDF	20	
Conditional Expected Values	21	
Example: Conditional Expected Value	22	
Probability: Two Random Variables	2 3	
Joint and Marginal Cumulative Distributions	24	
Joint and Marginal Density Functions Conditional Distributions and Density	25	
Functions	26	
Example: Conditional PDF	27	
Principle of Maximum Likelihood	$\frac{1}{28}$	
Independent RVs	29	
Expected Value: Moments	30	
Example: Expected Value	31	
Bivariate Gaussian Distribution	32	
Example: Rician Distribution	33	
Functions of Two RVs	34	
Sum of Two RVs	35	
Product and Quotient of Two RVs	36	
Conditional Expectations and Mean-Square		
Estimation	37	

Sums of N Complex Random Variables	38
Central Limit Theorem	39
Example: Central Limit Theorem	40
Phases Uniformly Distributed on $(-\pi,\pi)$	41
Phases Not Uniformly Distributed on $(-\pi,\pi)$	42
Example: Phases Uniformly Distributed on	
$(-\alpha, \alpha)$	43
Central Limit Theorem Does Not Apply	45
Example: Non-Gaussian Limit	46
	40
Random Processes	48
Random Processes Terminology	49
First- and Second-Order Statistics	50
Stationary Random Processes	51
Autocorrelation and Autocovariance	-
Functions	52
Wide-Sense Stationary Process	53
Example: Correlation and PDF	54
Time Averages and Ergodicity	55
Structure Functions	56
Cross-Correlation and Cross-Covariance	
Functions	57
Power Spectral Density	58
Example: PSD	59
PSD Estimation	60
Bivariate Gaussian Processes	61
Multivariate Gaussian Processes	62
Examples of Covariance Function and PSD	63
Interpretations of Statistical Averages	64
Random Fields	65
Random Fields Terminology	66
Mean and Spatial Covariance Functions	67
1D and 3D Spatial Power Spectrums	68
2D Spatial Power Spectrum	69
Structure Functions	70
Example: PSD	71
	• 1
Transformations of Random Processes	72
Memoryless Nonlinear Transformations	73
Linear Systems	74
Expected Values of a Linear System	75
Expected values of a Effect System	10

Field Guide to Probability, Random Processes, and Random Data Analysis

Table of Contents

Example: White Noise Detection Devices Zero-Crossing Problem	76 77 78
Random Data Analysis	79
Tests for Stationarity, Periodicity, and	
Normality	80
Nonstationary Data Analysis for Mean	81
Analysis for Single Time Record	82
Runs Test for Stationarity	83
Equation Summary	
Bibliography	90
Index	91

Glossary of Symbols and Notation

a , x , u , etc.	Random variable, process, or field
$B_{\mathbf{u}}(R)$	Autocovariance or covariance function of random field
$C_{\mathbf{x}}(\tau)$	Autocovariance or covariance function of
	random process
$C_{\mathbf{xy}}(\tau)$	Cross-covariance function
CDF	Cumulative distribution function
Cov	Covariance
$D_{\mathbf{x}}(\tau)$	Structure function
E[.]	Expectation operator
$E[g(\mathbf{x}) A]$	Conditional expectation operator
$f_{\mathbf{X}}(x), f_{\mathbf{X}}(x,t)$	Probability density function
$f_{\mathbf{x}}(x A)$	Conditional probability density
$F_{\mathbf{x}}(x), F_{\mathbf{x}}(x,t)$	Cumulative distribution function
$F_{\mathbf{x}}(x A)$	Conditional cumulative distribution function
$_{p}F_{q}$	Generalized hypergeometric function
h(t)	Impulse response function
$H(\omega)$	Transfer function
$I_p(x)$	Modified Bessel function of the first kind
$\hat{J}_p(x)$	Bessel function of the first kind
$K_p(x)$	Modified Bessel function of the second kind
m, m(t)	Mean value
m_k	k'th standard statistical moment
n!	Factorial function
PDF	Probability density function
Pr	Probability
Pr(B A)	Conditional probability
PSD	Power spectral density
RV	Random variable
$R_{\mathbf{x}}(\tau)$	Autocorrelation or correlation function
$R_{\mathbf{xy}}(\tau)$	Cross-correlation function
$\Re_{\mathbf{X}}(\tau)$	Long-time-average correlation function
$S_{\mathbf{x}}(\omega), S_{\mathbf{u}}(\kappa)$	Power spectral density function
U(x-a)	Unit step function

Field Guide to Probability, Random Processes, and Random Data Analysis

Glossary of Symbols and Notation

Var	Variance
$Var[\mathbf{x} A]$	Conditional variance
$\overline{\mathbf{x}(t)}$	Time average
z^*	Complex conjugate of z
$\gamma(c,x)$	Incomplete gamma function
$\Gamma(x)$	Gamma function
$\delta(x-a)$	Dirac delta function (impulse function)
μ_k	k'th central statistical moment
$\hat{\mu}(t)$	Estimator of mean value
$\sigma^2, \sigma^2_{\mathbf{x}}$	Variance
τ	Time difference $t_2 - t_1$
$\Phi_{\mathbf{x}}(s)$	Characteristic function
	Absolute value
E	Belonging to
$\binom{a}{n}$	Binomial coefficient
$\langle \rangle$	Ensemble average
{}	Event
\cap	Intersection