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Preface

Scanning technology for optical and laser systems is used in the controlled
deflection of optical and laser beam for information transfer, such as actively
or passively detecting events in a given direction (e.g., lidar), detecting
information from a given surface (e.g., bar-code scanning) or inducing a
physical effect (e.g., photoconductivity or photomagnetism) on the surface
during a flying spot scan. All of these scanning systems have been applied to a
number of useful products that have a direct bearing on our life.

The scope of this book is restricted to mirror scanning systems and rotating
wedge prism scanning systems. Here, “mirror”means a plane reflecting surface,
and “wedge” means a thin prism with a right triangle cross-section.

Over nearly 30 years, I have been interested in the mathematical analysis
of scanning devices for optical and laser systems to yield results with higher
accuracy than those obtained from geometrical construction of imaging of an
object by a movable mirror or prism, which was a method to yield design data
for scanning devices engineering when mathematical model is difficulty to
obtain from open publications, in which the exact form of important
equations may be considered as proprietary.

My analytical results have been summarized according to the format of
original research papers, most of which were written solely by me and
published in archival journals. After their publication, I usually received
emails from readers with questions, friendly comments and reprints requests.
This situation was different from my experience acquired after publishing
theoretical papers on diffraction and coherence of light in optical physics,
although many of them have high citation numbers over a longer period of
time. Reader reactions to my research encouraged me to prioritize this book
as a summary of the results I obtained in the past.

I appreciated the opportunity that SPIE gave me to collect my published
and unpublished manuscripts together, along with detailed commentary and
corrections in a book so that readers need not search through old journals.
Readers of this book are assumed to have a foundation in vector operation
and calculus, and a reasonable knowledge of elementary optics and laser.
Detailed proofs that require long derivations are sometimes omitted but can
be found in either the appendices or the cited references.
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This book is divided into three parts, starting with an introductory chapter
for the laws of reflection and refraction and the mathematical preliminaries of
analytical raytracing (most expressions are in vector forms). Chapters 2
through 4 are the first part, which covers topics of mirror scanning devices
with one axis of rotation for conic-sections scanning. Chapters 5 through 6 are
the second part, which covers topics of mirror scanning devices with two axes
of rotation, e.g., gimbaled mirror and Galvanometric scanners in cascade for
two-dimensional scanning. Chapters 7 through 10 are in the third part to
address Risley-prism-based beam-steering systems (i.e., rotating wedge prism
scanning systems) with two to three elements for moving target searching and
tracking.

Since each chapter in this book is an enlarged version of my technical
paper focused on a specific topic as noticed by a single line about the main
reference material of that topic at the beginning of each chapter, which may
be helpful to readers who are interested in a specific scanning device and want
to know its analytic model and computed results.

Writing a book is time-consuming and laborious; I doubt that many
books have been written without some substantial help and encouragement by
others. This book is no exception; therefore, I wish to express my appreciation
to my friends at Symbol Technologies, Inc., especially Dr. Jerome Swartz and
Dr. Satya Sharma.

I am obliged to SPIE Press, specifically, Dr. Eugene Arthurs, who
initiated this project, and Mr. Scott McNeill, who helped bring it to fruition.
I am also obliged to the Optical Society for permission to reproduce drawings
from my papers published in the Journal of Optical Society of America A and
Applied Optics. I thank my sister, Professor Xiaoyu Li; my niece, Lily Ji; and
my friend, Earl O’Neil—without their encouragement and support, this book
would not have been possible.

Yajun Li
October 2021
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