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Infrared analysis of bone in health and disease
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Abstract. Infrared spectroscopy, microspectroscopy, and microspec-
troscopic imaging have been used to probe the composition and
physicochemical status of mineral and matrix of bone in normal and
diseased tissues using a series of validated parameters that reflect
quantitative and qualitative properties. In this review, emphasis is
placed on changes in bone’s composition and physiochemical status
during osteoporosis and the impact of currently used therapeutics on
these parameters, although the impact of infrared microscopy in other
pathological states is briefly discussed. © 2005 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1922927]
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1 Introduction
Bone is a composite tissue that consists of mineral, organi
matrix, water, and cells. Bone provides mechanical strengt
and protection to the body, and maintains mineral ion homeo
stasis. Always in a dynamic state, bone is deposited by cell
known as osteoblasts, and removed by multinucleated cel
known as osteoclasts. This formation and resorption process
often referred to as ‘‘remodeling.’’ When either of these pro-
cesses is impaired or excessive, bone no longer has optim
mechanical properties. The best-known example of this im
balance between bone formation and bone resorption occu
in osteoporosis,1–3 a disease that affects both women and men
and sometimes children,4 and is characterized by an increase
in porosity resulting in an increased risk of fracture. After a
first fracture, the risk of sustaining a second fracture is ex
tremely high.3 Osteoporosis may occur because osteoclast
are too active or because osteoblasts are inactive. The purpo
of this review is to describe how infrared spectroscopy is
helping us understand the changes in osteoporotic bone befo
and after therapeutic intervention, and to illustrate how othe
bone diseases can be studied with infrared~IR!.

Infrared analysis was first applied to bone more than half a
century ago.5,6 It was initially used to confirm the x-ray dif-
fraction result that bone mineral was analogous to the natu
rally occurring geologic mineral, hydroxyapatite~HA! ~Fig.
1!.5 As instrumental sophistication increased, IR was used to
determine the presence and nature of IR active bone impur
ties(HPO4 ,CO3), which substitute in HA lattice positions.6–8

IR and Fourier-transform IR~FTIR! were similarly used to
demonstrate changes in HA composition caused by diet,9–11

space flight,12 and chronic hypoperfusion.13 IR spectroscopy
was used in 1966 to describe the changes in the crystal siz
and perfection of the bone apatite particles~% crystallinity!.14

The increases in size and perfection were correlated with th
sharpening of thec-axis x-ray diffraction peak. It should be
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noted that based on x-ray diffraction one cannot distingu
absolute increases in crystallite size from formation of a s
ichiometrically more perfect lattice structure. The change
x-ray diffraction pattern was initially described as a transiti
from an amorphous~noncrystalline! calcium phosphate to a
poorly crystalline hydroxyapatite,14 but later was recognized
as the maturation of nanoparticles of hydroxyapatite.15 FTIR
spectroscopy has frequently been used to characterize
mineralized matrix formed in cell and organ cultures~e.g.,
Refs. 16–21!, and recently it has been used to demonstrate
properties of the tissue formed on bone-inducti
materials.22–24 IR spectroscopy was also used to identify t
presence of bone-like mineral in pathologic~abnormal! min-
eral deposits.25–28

The more recent instrumental advance in which a FT
spectrometer is coupled with an optical microscope revo
tionized the FTIR study of bone by enabling spectra to
acquired at anatomically discrete sites. This was extrem
important because bone is a heterogeneous tissue~Fig. 2! and
spatial variation had previously been lost due to the need
homogenize the bone before analysis. With FTIR microsp
troscopy, spectra could be obtained at sites along an os
~Fig. 3!29 or during the process of new bone deposition.30

Addition of a focal plane array detector to the infrare
microscope was another major advance in the IR analysi
bone as it allowed about a thousand fold increase in the sp
of data acquisition. With the concomitant improvements
computer processing capabilities, hyperspectral images
sisting of a complete mid IR spectrum at eachx, y location in
a thin section~see Fig. 3! can be readily acquired. In thes
images each pixel corresponds to a point in thex-y plane of
the sample, with thez axis corresponding to the magnitude
the desired IR parameter~univariate or multivariate! at that
site. Fourier-transform infrared microspectroscopic imag
was rapidly applied to the description of anatomic change
bone properties,31 analyses of mineralization in cell cultures,32
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Fig. 1 Structural formula for the hydroxyapatite lattice showing sub-
stituents that might be found in each lattice site.
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and characterization of bone formation on implant
materials.33,34 It has been most extensively applied to evalua-
tion of diseased bone, which will be the main subject of this
review.

There are limitations to IR imaging and microspectroscopy
that should be noted. As discussed later, thin~2–6 mm! sec-
tions are required, and the samples cannot be examined in
hydrated form because of water interference with the spectra
While reflectance spectra can be used to examine thick spec
mens, there are reflectance artifacts that still remain to b
overcome before surface reflectance can be applied. Perha
the greatest limitation is that to do an IR analysis of bone a
biopsy is required, thus this is an invasive technique.

A typical spectrum of ground bone is shown in Fig. 4.
Only the frequencies relevant to the analyses of bone compo
sition are shown. There are phosphate vibrations, carbona
vibrations, representing the extent and nature of carbonat
substitution in the HA lattice, and strong protein peaks
~Amide I, Amide II, Amide A!. The latter arise from peptide
bond C5O stretch, mixed N–H in plane bending and C5O
stretch and N–H stretching, respectively. These protein band
arise mainly from collagen which accounts for almost 95% of
the organic matrix. The other 5% of the matrix contains non-
collagenous extracellular matrix proteins whose functions ar
reviewed elsewhere,35 lipids, and cell components.

A quantitative assessment of the mineral content of the
bone being analyzed can be made by calculating the ratio o
from

bone,
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ra-

ed
al to
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oth

e is
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the integrated phosphatev1, v3, and amide I peaks. Mixtures
of collagen and synthetic HA have been analyzed both
gravimetric and FTIR analyses and shown to be linearly
lated validating this ratio.36 Carbonate to phosphate ratios ca
similarly be calculated from their respective integrated are
and these ratios can be used to follow the incorporation
carbonate into the bone mineral.37 Deconvolution of the car-
bonate bands can be used to determine whether the carb
is substituting for phosphate or hydroxide.6,7 The validation of
the carbonate: phosphate ratio was done by chemical m
surements of carbonate content.38,39

2 Methods for FTIR Analyses of Bone
Bone, by its very nature, is a hard material, and hence,
extremely difficult to prepare the thin sections required
microscopic examination in the visible spectral region. S
tions thicker than 5–6mm do not transmit sufficient light,
hence, IR analysis of bone routinely requires samples 2–5mm
in thickness. To circumvent the problem of obtaining thin se
tions, pathologists routinely embed bone in a resin tha
harder than the bone itself. This embedded bone mixture
then be sectioned on a microtome with a diamond or tungs
knife. While this facilitates specimen preparation, the proc
induces complications in the IR analysis of bone. The emb
ding materials all have IR active modes, and thus spec
subtraction must be used to remove these contribution40

While spectral subtraction of embedding media is fai
straight forward for single spectra@there is a unique band fo
poly~methylmethacrylate! ~PMMA!, the most common em
bedding material, at 1729 cm21# it is more of a challenge
when subtracting PMMA from hyperspectral cubes contain
thousands of spectra, and specialized algorithms have b
developed for this purpose. Specifically, using ISYS softw
~Spectral Dimensions, Olney, MD!, spectra in the region o
interest are truncated, baseline corrected, and ‘‘normalized
a pixel containing only PMMA, making each PMMA inten
sity in the cube equal to 1.0. The normalized PMMA spectru
is then subtracted from each of the normalized spectra, cr
ing spectra at each pixel that are either 0 if the region c
tained only PMMA, or no evidence of the PMMA band.

The bone sites utilized for data collection are dependen
the question being asked. For example, when temp
changes in bone development are of interest, scans going
the outer bone forming surface~periosteum! to the inner bone
resorbing surface~endosteum! are most useful~Fig. 2!. If
comparisons are made between a diseased and a healthy
different areas~cortex, trabeculae! may be examined.

Parameters that are measured in addition to the ear
mentioned mineral: matrix ratio and carbonate: phosphate
tio are crystallinity,38,41 collagen maturity,42 and acid phos-
phate content.43 Several of these parameters, as describ
later, have been validated by independent methods. Miner
matrix ratio is correlated to the ash content when synthe
mixtures of hydroxyapatite and collagen are analyzed by b
methods~Fig. 5!.36 As reviewed elsewhere,2,36 increasing min-
eralization leads to stronger bones, although when ther
excessive mineralization bones can become brittle.

The crystallinity parameter~1030/1020 peak area ratio!
was validated by comparison with x-ray diffraction analys
of HA particle size.38 Investigation of the collagen maturity
Fig. 2 Three-dimensional view of half a mouse femur based on
micro-computerized tomography. Bone components discussed in the
text are illustrated, including cortical bone with its periosteal and en-
dosteal surfaces, the growth plate, and individual trabeculae.
-2 May/June 2005 d Vol. 10(3)



Boskey and Mendelsohn: Infrared analysis of bone . . .
Fig. 3 Osteonal bone. A FTIR image illustrating the variation in mineral: matrix ratio along with a photomicrograph showing the concentric rings
around the blood vessel in the center of the osteon, and individual spectra taken 20 mm apart along the osteon.
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parameter which is related to the presence of stable collage
crosslinks, is currently in progress using type I collagen pep
tides whose composition was determined by HPLC. Wherea
with FTIR microscopic data, the mineral parameters can be
calculated by resolving the peaks in the complexn1 , n3 con-
tour using curve-fitting, two-dimensional-IR, spectral decon-
volution or other methods!,44 for FTIR images, the large num-
ber of spectra which would have to be analyzed precludes th
use of these algorithms, since each spectrum has to be ind
031102Journal of Biomedical Optics
n

i-

vidually examined. The need to analyze thousands of spe
in an image led to the use of intensities at particular freque
positions, rather than peak areas to represent the concentr
of a particular component. While these intensities are linea
correlated with the same data obtained by curve-fitting ba

Fig. 5 Development of spectra structure correlation. Spectrally deter-
mined mineral matrix ratio correlates with conventionally determined
ash weight.
Fig. 4 FTIR spectrum of ground adult mouse bone showing frequen-
cies of interest.
-3 May/June 2005 d Vol. 10(3)
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Fig. 6 Image of trabecular bone in normal and osteoporotic females. Right figure shows mineral: matrix ratio and left figure shows crystallinity.
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on a pixel by pixel comparison,45 the range of intensity values
is narrower than the range of peak area values, making th
intensity ratio less sensitive because of a loss of dynami
range.

The composite picture of each of these parameters
whether obtained from imaging or point-by-point microscopic
data, gives an image of the composition, crystallinity, and
amount of bone mineral. We believe that one or more of thes
IR parameters are major predictors of ‘‘bone quality’’ or the
tendency of bone to fracture. Other factors influencing bone
quality are bone geometry, bone microarchitecture~especially
connectivity!, the presence of microcracks, and the density o
the bones. Bone quality is altered with age, as mineral conten
increases, crystallinity reach maximal values, and collage
matures.46 Our laboratory is trying to correlate spectroscopic
changes in bone IR parameters with changes in mechanic
properties, either tested in the same sample or in adjace
tissue. There are limited data indicating that crystal size mat
ters and that a broad distribution of mineral: matrix and crys-
tallinity values is found in healthier bones.46 There is also a
strong indication that crystal size is related to mechanica
strength, as shown in a study by Turner in which the crysta
thickness was inversely related to strength in fluoride treate
animals.47 Since HA crystal thickness decreases with age a
crystal length increases, this is in accord with our preliminary
data that mechanical strength is greater when average crysta
linity is greater. Recently Raman spectroscopy has also show
an inverse correlation between crystallinity and elastic defor
mation in a rat aging model.48

3 Bone Quality
The quality of bone refers to its optimal ability to perform its
functions, as described in terms of bone strength. Bon
strength in turn is determined in part by both geometric and
material properties,49 bone mineral density,50 bone connectiv-
ity ~whether trabecular bone struts are connected!,51 and
031102Journal of Biomedical Optics
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genetics.52 We have proposed the features of bone charac
ized by IR parameters also contribute to bone strength,
are demonstrating that they show variation in both health
disease.

3.1 Age and Sex Dependent Changes in Normal
Bone
Infrared microspectroscopic and imaging studies have dem
strated that there are spatial changes in each of the b
spectrum-derived properties with tissue age~Fig. 3!, and av-
erage changes with animal age.46 There are also male an
female differences which may reflect the differences in ra
of growth in different sexes. The tissue- and animal-age
pendent changes also vary with the type of bone being ex
ined, but in general until the individual reaches peak bone
there is an increase in mineral: matrix ratio, carbonate: ph
phate ratio, crystallinity, and collagen maturity.46,53 Once
adulthood is reached, the bone parameters are relatively
variant, unless there is evidence of bone disease.

3.2 Osteoporotic versus Normal Bone
The first IR analyses of bones from osteoporotic patients54,55

as reviewed elsewhere56 were inconclusive, because tissu
had been homogenized and some contained sites of re
fractures. IR microspectroscopy and imaging facilitated
description of the changes occurring in bones of humans
animals with osteoporosis.

Using biopsies from patients who had sustained
teoporotic fractures, but were at a distance from the fract
site, our studies consistently showed a decrease in min
content, an increase in crystallinity, and an increase in c
lagen maturity in both the trabecular and cortical bones of
patients as contrasted with age-matched controls.57,58 More
significantly the age-dependent temporal changes in these
rameters were not detected in the untreated osteoporotic
tients. Figure 6 compares the mineral content and crystalli
-4 May/June 2005 d Vol. 10(3)



Boskey and Mendelsohn: Infrared analysis of bone . . .
Fig. 7 Comparison of (a) the mineral: matrix ratio and (b) carbonate: phosphate ratio in vertebrae of a sheep with metabolic acidosis (left)
contrasted with a normal age-matched control sheep (right). Pixel histograms show the distribution of parameters in the biopsy. Courtesy of Paul
West, Hospital for Special Surgery.
031102-5Journal of Biomedical Optics May/June 2005 d Vol. 10(3)



Boskey and Mendelsohn: Infrared analysis of bone . . .
Fig. 8 Effect of estrogen (solid circles) on time-dependent changes in healing fracture callus in an ovariectomized rat is accelerated, and rapidly
reaches the values seen in control bone (open circles) at a location distant from the fracture site in the same animals. Values are mean6S.D. for five
rats. Courtesy of H. OuYang, thesis, Rutgers University, Department of Chemistry.
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in trabecular bone of one normal and one untreated os
teoporotic female. Typical of the osteoporotic cases studied t
date, the trabeculae in the osteoporotic case are thinner tha
those in the normal; the mineral/matrix ratio in the os-
teoporotic patient is significantly reduced, while the bone
crystallinity is increased. These all may contribute to the in-
creased fragility of osteoporotic bone.

Comparable changes in IR parameters were found in ova
riectomized monkeys58–60 indicating the excellence of this
model for studies of the human disease. Ovariectomized dog
failed to show the changes in mineral: matrix ratio and min-
eral crystallinity,61 although they did manifest treatment-
dependent changes. Similarly, in an unpublished pilot study o
ovariectomized sheep(n55) there were no significant
changes in imaging parameters, however sheep subjected
metabolic acidosis~MA ! did have changes in mineral to ma-
trix ratio similar to those seen in osteoporotic humans@Fig.
7~a!#. The carbonate; phosphate distribution in the MA sheep
was also different from that in the controls@Fig. 7~b!#. The
pixel histograms describing the distributions of these param
eters in the image shown are also presented.

Manipulation of genes in mice has become routine, and
genetic polymorphisms associated with osteoporosis in hu
mans can be examined in rodent models. While rodent mode
do not develop osteoporosis, they do lose bone, and henc
can be used for evaluating therapies, or validating spectro
scopic parameters. Using congenic mice, Blank et al. was ab
to relate their mechanical strength to mineral: matrix ratio,
and to show a direct correlation between this ratio and
crystallinity.62

Overexpression of the vitamin D receptor in mice resulted
in a phenotype in which calcium absorption was disturbed
There while bones were thicker and the distribution of peak
calcium content as determined by backscatter electron imag
ing was increased and sharpened, there were, however, n
changes in mineral content, mineral composition, crystallinity,
particle size, or density as determined by a number of physi
cochemical techniques including IR.63 Male and female mice
in which the noncollagenous protein osteonectin expression
knocked out sustain rapid loss of trabeculae,45 and IR mi-
crospectroscopy demonstrated an increase in collagen mat
rity, a decrease in mineral content, and an increase in cryst
size, reminiscent of human changes in osteoporosis. Mic
031102Journal of Biomedical Optics
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which lack osteocalcin expression, have thickened bones,
fail to resorb their bone. FTIR microspectroscopy demo
strated that the crystals were smaller although there w
more crystals present, indicative of defective bone mode
in these animals.64 Mice lacking the matrix protein, osteopon
tin, have increased mineral content, and unlike the osteoca
deficient mice, increased crystal size,65 implicating this pro-
tein both in regulation of crystal size and in regulation
remodeling. There are numerous other models which h
been created to mimic human genetic defects associated
both decreased and increased bone density@e.g., Refs. 66–
70#, but their mineral properties, have not yet been report

3.3 Therapies for Osteoporosis
A large number of pharmaceutical interventions are curren
being evaluated for the prevention and treatment
osteoporosis.71 Because there are surrogate markers of bo
quality, fewer and fewer biopsies are being collected for h
tomorphometric evaluation of bone turnover, thus there
fewer biopsies that can be used to quantify bone mineral p
erties. This has caused more and more reliance on the an
models discussed earlier. We have, however, shown that
mone replacement therapy in women just reaching th
menopause improves bone quality,72 Similarly, we have
shown, in agreement with published data on mineral densit73

that the selective estrogen receptor modulator, raloxifene
not detrimental to bone quality~manuscript in preparation!.
Estrogen itself was demonstrated by IR imaging, as sum
rized in Fig. 8, to facilitate the rate of healing in a rat fractu
injury model.74

Other studies reported determination of the effects
therapies on mineral quality in simian and rodent models. I
mouse model of brittle bone disease, a condition in man
mouse caused by a variety of mutations in the collagen ge
the bisphosphonate alendronate reduces fracture risk, wit
causing a statistically significant change in mine
crystallinity.75,76 Similarly a study of dogs treated with bot
alendronate, and another bisphosphonate, risedronate, di
show significant changes in mineral properties as determi
by IR of ground bones.77 FTIR imaging of biopsies from os-
teoporotic patients or animal models treated with the bisp
sphonates currently in clinical use are still needed.
-6 May/June 2005 d Vol. 10(3)
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Boskey and Mendelsohn: Infrared analysis of bone . . .
Studies in monkeys have shown that parathyroid hormon
increases new bone formation,78 and that a bone resorption
inhibitor, nandrolone decanoate, also improves bone qualit
by stimulating new bone formation, evidenced by increased
acid phosphate, and carbonate content, and lower minera
matrix ratios.58 Ibandronate, another bisphosphonate,79 and
strontium ranelate,80 drugs in clinical trial have been evalu-
ated in monkeys, and the properties of those bones in the ne
future should be evaluated by IR methods.

4 Other Bone Diseases
In addition to osteoporosis, a great deal of information, be
yond what could be acquired by standard histochemical tech
niques, is being learned from FTIR microspectroscopic stud
ies of other bone diseases. In osteoarthritis, there is som
debate as to whether the disease starts in bone and progres
to the overlying cartilage, or vice versa. FTIR analyses of
human tissues81 showed the mineral: matrix ratio was highest
in normal cortical bone of the ulna, and lower in the sclerotic
area of the affected site, which in turn was higher than value
in loose bodies or trabecular bone of the tibia. This led the
investigators to suggest that demineralization was conside
ably higher in osteoarthritis of the knee joint and remineral-
ization was likely to occur under the acidic conditions in the
articular region in this disease.

Osteogenesis imperfecta or brittle bone disease, as me
tioned earlier, is a rare condition characterized by defects in
the collagen gene and increased risk of fracture. FTIR analy
ses have demonstrated that the mineral: matrix ratio in th
mouse model of a moderate-to-severe phenotype is reduced75

most likely because of a deficit in collagen content, and tha
the mineral crystals may be outside the collagen fibrils, and in
general, are smaller than those in age-matched controls.82

Other than a crystallographic evaluation of mineral crysta
properties in humans with this disease,82 and a recent Raman
evaluation of a ‘‘knock-in’’ mutation,83 there is little data on
the effect of the various collagen mutations on mineral crysta
size and perfection. Such analyses are extremely important a
collagen provides the backbone on which bone mineral crys
tals deposit.

Osteopetrosis is another rare disease, this one due to a
normalities in the way osteoclasts~bone resorbing cells! de-
velop. In this disease the marrow cavity is absent, and th
bone is like rock because the remodeling process is impaired
Bone crystals in the rat model of this disease are decreased
size84 while mineral content is increased. In a single human
case, the same increase in mineral: matrix ratio and decrea
in crystallinity was noted by infrared imaging.85

The last example is a more frequently observed disease
osteomalacia. This disease is caused by deficiencies in vita
min D. This vitamin is also the hormone that is responsible
for regulating serum calcium levels, by regulating intestinal
and kidney adsorption, and by contributing to the regulation
of bone remodeling. In children, the disease is known as rick
ets, and is characterized by softened bones. In adults, the di
ease is manifest as an increased amount of unmineralize
bone~osteoid!. We used IR imaging to examine the mineral-
ized matrix in patients with ‘‘normal’’ bone and patients diag-
nosed with osteomalacia. In the cortical bone, there were n
differences in IR parameters when the unmineralized osteoi
031102Journal of Biomedical Optics
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was excluded from analysis by spectral masking. In the
becular bone, there was a general decrease in mineral con
a significant increase in matrix maturity, but no difference
crystallinity.86 These differences could not be assessed
standard histomorphometry.

5 Conclusions
The application of infrared microspectroscopy and infrar
microscopic imaging to the characterization of bone disea
and evaluation of the effects of therapies on the bone pro
ties in these diseases is in its infancy. While IR has had a l
history in the bone field, it is these newer applications t
will have the greatest impact on the medical profession and
the population at large. The next generation of technolog
advances will include more sophisticated means for data p
cessing, including cluster and factor analyses, and detec
for imaging instruments which will allow access to thev4
phosphate bands which currently cannot be examined w
imaging spectrometers.
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