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Abstract. We present the principle, fabrication, and charac-
terization of a novel wavefront splitting intrinsic Fabry-Perot
fiber temperature sensor. The sensor is made by splicing a
section of fused silica tubing to the tip of a single-mode fiber.
The completed sensor has the same diameter as the fiber
and the sensor length is less than 0.5 mm. © 2005 Society of
Photo-Optical Instrumentation Engineers.
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1 Introduction

Intrinsic Fabry-Perot interferometer �IFPI� fiber sensors are
well known for their ability to measure temperature, strain,
pressure, and ultrasound perturbations due to their excellent
sensitivity, rapid response, immunity to electromagnetic in-
terference, and potential of multiplexing.1

The interferometers can be divided into two major cat-
egories: amplitude splitting interferometers and wavefront
splitting interferometers.2 Most of the IFPI sensors are
based on the amplitude splitting principle. The amplitude
splitting scheme varies from using different mode-field-
diameter single-mode fibers, internal mirrors to fiber micro
cavities,1,3–5 to name just a few. However, fiber polishing,1

dielectric mirror deposition, and arc splicing3 impose strin-
gent control in the sensor fabrication.

We report here an IFPI fiber sensor that is based on a
wavefront splitting principle. Only splicing and cleaving of
a section of fused silica tubing to the single-mode fiber
�SMF� is used. The fabrication process is significantly sim-
plified and equivalent performance to the traditional IFPI
sensor is achieved. The theoretical analysis, sensor fabrica-
tion, as well as sensor performance are presented.

2 Principles of Operation

The wavefront split IFPI structure is illustrated in Fig. 1. A
piece of fused silica tubing is spliced to the SMF, and then
cleaved close to the splice point. The wavefront of the guid-
ing LP01 mode of the SMF is split into two components at
the fiber-tubing interface. The two components are reflected
by the fiber core-air interface and cleaved tubing end, re-
spectively. The Fabry-Perot cavity length is the optical
length of the fused silica tubing. The interference spectrum
is obtained by a sensor interrogator, and the cavity length is

6
calculated by a high-precision white-light algorithm.
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The reflectivity R is given by the Fresnel formula2

= �nglass − nair

nglass + nair
�2

�1�

here nglass and nair are refractive indices of fused silica and
ir.

The electric fields from the cleaved SMF reflection, fiber
ore-air reflection, and fused silica tubing reflection are
hown in Fig. 1 and given by

R�r,�� = A0
�Re

�r2

w2 �2�

core�r,�� = �ER�r,�� , r � a

0, r � a
� and

�3�

tube�r,�� = �ER�r,�� , r � a

0, r � a
�

here A0 is the magnitude of the incident electric field, w is
he mode-field radius of the single-mode fiber, and a is the
nner radius of the fused silica tube. Gaussian field distri-
ution approximation7 is used in Eq. �2�.

Only those of the truncated reflection components
oupled into the fundamental mode of the SMF can reach
he detector. The coupling coefficients are

core =

�
0

2� �
0

a

EcoreER
*r dr d�

�
0

2� �
0

+�

ERER
*r dr d�

and

�4�

tube =

�
0

2� �
a

+�

EtubeER
*r dr d�

�
0

2� �
0

+�

ERER
*r dr d�

.

hus the normalized reflection power of the two compo-
ents is given by �2.
Fig. 1 Split wavefront IFPI sensor head structure.
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3 Sensor Fabrication

The objective of IFPI fabrication is to obtain large signal-
to-noise ratio and high fringe visibility. In the fabrication
process, the fused silica tubing is first spliced to an SMF.
The fiber tubing is then put on a fiber cleaver and placed
under a microscope. The splicing point can be easily iden-
tified under the microscope. The tubing is then cleaved at a
distance to the splicing point. Corning SMF28 and fused
silica tubing from Polymicro Technologies are used. The
fiber splicer and cleaver used are Type-36 Fiber Splicer
�Sumitomo Electric� and CT-04B High Precision Fiber
Cleaver �Fujikura�. The microscope is from Olympus
�SZ40�. A Si720 system �Micron Optics� is used as sensor
interrogator.

It is found that fiber core-air reflection decreases mono-
chromatically when increasing either the fusion splicing arc
power or the arc duration as shown in Fig. 2 �the arc power
P and arc duration D are normalized to P=15 and D=2.0,
which is used in the standard SMF splicing configuration�.
This is because the silica tubing inner diameter shrinks with
the increasing amount of arc generated heat, which results
in a decreased effective reflection area. Therefore to fabri-
cate a good IFPI sensor, low arc power and short arc dura-
tion that does not degrade the mechanical strength of the
sensor is adopted. Silica tubing with a 5-	m inner diameter
is chosen because it provides the closest magnitudes of re-
flections on both interfaces, therefore high fringe visibility.
The experimental data is compared with theoretical predic-
tion in Fig. 3, which proves the coupling model a valid
assumption. The tubing should be well cleaved, because a
tilted end face will increase the coupling loss of the reflec-
tion to the single-mode fiber and reduce the fringe visibil-
ity. The silica tubing length should be controlled within a
500-	m range. The light in the tubing will diverge because
it is no longer confined in a waveguide structure. Longer
cavity length would result in larger divergence and less
reflected light coupled into the single-mode fiber.

Since the fiber splicing process is highly repeatable and
controlling the IFPI length within 500 	m is not difficult

Fig. 2 IFPI fiber core-air reflection vs splicing arc power and dura-

tion �normalized to cleaved SMF reflection�. c
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ith a microscope, the chance of successful IFPI fabrica-
ion is only dependent on the cleaving quality of the tube.
en out of 13 sensors that we have made demonstrate over
0-dB peak-to-peak fringe as shown in Fig. 4. With a fine-
uned fiber cleaver, the successful rate of IFPI fabrication is
xpected to exceed 75%.

Sensor Performance

he sensor is co-positioned with a thermocouple �K-type,
mega� in a double-bore ceramic tube and then placed in a

urnace �Thermolyne 48000�. The function of the ceramic
ube is to dampen the temperature fluctuation. The tempera-
ure is increased with 50°C per step and 1 h at each step
rom room temperature to 600°C back to room temperature
or four cycles. The mean value of sensor’s optical path
ifference �OPD� at each temperature step is shown in Fig.
. The maximum deviation between the experimental OPD
urve and the four-time averaged OPD curve is ±0.23 nm.

ig. 3 IFPI core and cladding reflection �normalized to cleaved SMF
eflection�.

ig. 4 IFPI spectrum and temperature performance �normalized to

leaved SMF reflection�.
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The total OPD change from 50°C to 600°C is 517.0 nm.
Thus the sensor repeatability is approximately ±0.24°C
and ±0.046% of the dynamic range. The resolution of the
sensor system is usually interpreted by its standard devia-
tion of temperature measurements. It is common to use
twice the standard deviation �STD� as the direct measure of
resolution. The sensor is inserted into a ceramic tube and
placed in an environmental chamber �Test Equity 1000 Se-
ries Temperature Chamber� at 25°C for 5 h, and the OPD is
sampled every 5 s. The STD is 0.13 nm. The resolution of
the sensor system is 0.26 nm, which corresponds to 0.27°C
and 0.05% of its dynamic range. The nonlinear behavior of
the sensor is caused by the temperature sensitivity of both
the refractive index of silica glass and the length of the
cavity.

5 Conclusion

In this letter, we presented the principle of the proposed
wavefront splitting IFPI followed by discussion on fabrica-

tion optimization. The IFPI is made with a 5-	m ID fused
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ilica tube. Short arc duration and low arc power is used in
he sensor fabrication. The sensor is measured to 600°C for
our cycles and demonstrated 0.27°C resolution and
0.24°C repeatability.
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