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Abstract. The physical changes of tissue are complicated to evaluate during optical clearing (OC) treatment.
Monitoring the changes of optical parameters, including the complex refractive index (CRI), helps people better
understand the OC process. From the imaginary part of CRI, we can deduce the extinction coefficient of tissue.
Based on the total internal reflection method, the time-dependent CRI of porcine muscle during natural dehy-
dration is well determined. Results show that the real RI increases continuously with the increase of dehydration
time, whereas the extinction coefficient initially increases and then decreases. Finally, the extinction coefficient
becomesmuch smaller than the initial value, which demonstrates that better tissue optical clarity is obtained. The
change tendency of the extinction coefficient of tissue is used to qualitatively explain the dynamic change of
transmittance of a natural dehydrated tissue. Consequently, CRI, especially its imaginary part, is a very useful
optical parameter by which to evaluate the OC effect. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.20.4.045001]

Keywords: optical clearing; tissue; complex refractive index; total internal reflection method; natural dehydration.

Paper 150046RR received Jan. 27, 2015; accepted for publication Mar. 20, 2015; published online Apr. 13, 2015.

1 Introduction
With the development of biological optics, optical diagnostics
and optical treatments have drawn much attention. Due to the
high scattering of tissue, the penetration depth of light in tissue
is limited. Tuchin et al.1 proposed the optical clearing (OC) tech-
nique to reduce tissue scattering. The OC technique reduces the
mismatches of refractive index (RI) in tissue by partly replacing
the interstitial or intracellular water with high RI chemical
agents. The RI mismatches are mainly due to the different tissue
components. For example, the RIs of collagen fibrils, cellular
organelles, and tissue fluid are 1.47, 1.39 to 1.42, and 1.35,
respectively.2,3 Rylander et al.4 suggest that water transport is
also an important mechanism for tissue OC. According to the
heuristic particle-interaction model described in Refs. 4 and
5, the tissue scattering can be controlled by changing the volume
fraction of the high RI components in tissue. As studied in
Refs. 4 and 6, both the evaporation induced and the compression
induced dehydration can allow for better tissue optical clarity.

Various methods have been applied to evaluate the OC effect,
such as photographic imaging technique,4 optical coherent
tomography technique,4 transmission electron microscopy,4

optical transmittance and reflectance measurements.4,7–10 These
methods mostly evaluate the OC effect by detecting the
intensity change of light rather than the change of the optical
parameter. The inverse adding-double method is a useful
approach with which to deduce the absorption and scattering
coefficients.11,12 However, the RI value used in the calculation

is a supposedly fixed value, which is actually varies during OC.
Among the optical parameters of tissue, the complex refractive
index (CRI) is an important one and is defined as n ¼
nrð1þ ikÞ.13 Here, nr is the real RI, and the imaginary RI, k,
satisfies k ¼ μtλ∕4π. The extinction coefficient, μt, represents
the energy loss per unit in certain direction caused by absorption
and scattering, and μt ¼ μa þ μs.

14 The total internal reflection
(TIR) method is widely used to determine the nr of tissue

15–17

and has been improved to measure the CRI of tissue.18–20

However, the TIR method and CRI have not been applied to
evaluate the OC effect.

In this paper, the TIR method is used to monitor the CRI
change of natural dehydrated porcine muscle for the first
time. A better tissue optical clarity induced by dehydration
is observed. However, the change of CRI during dehydration
is not monotonic. The heuristic particle-interaction model is
utilized to qualitatively explain the change tendency of k.
Transmittance measurement of the natural dehydrated tissue
is also performed, and the dynamic change of the transmittance
is well explained by the change tendency of k obtained from
the CRI measurement.

2 Materials and Methods

2.1 Materials

Porcine muscle was selected as the sample. The fresh keeping
cabinet provides a temperature of −3 to 0°C. The tissue was
sealed by preservative film to maintain freshness until it reached
room temperature. Before measurement, the tissue was cut into
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50 × 30 mm2 with about a 2-mm thickness. Then the tissue was
carefully attached to the prism for CRI measurement and to a
slide glass for transmittance measurement. The air gaps between
the interfaces should be avoided.

2.2 Method

Figure 1 is the schematic diagram of the CRI measurement
setup, which is similar to that in Ref. 19. After passing through
a beam splitter M, a half-wave plate H, a polarizer P, and an
aperture diaphragm D1, the P-polarized He–Ne laser (632.8 nm)
propagates into the prism and irradiates on the tissue.

D2 is also an aperture diaphragm. np is the real RI of
the equilateral triangle prism (np ¼ 1.6166 at 632.8 nm). α,β,
and θ are the incident angle at the air–prism interface, the
apex angle of the prism and the incident angle at the prism–sam-
ple interface, respectively. A detector PD1 is used to monitor
the power shift of the laser. Detector PD2 is used to detect
the emergent light from the prism. The prism is mounted on
a rotation stage (PI, M-038), which is controlled by a Mercury
C-863 servo motor controller. θ, β, α, and np satisfy

θ ¼ β þ arcsin½sinðαÞ∕np�: (1)

Based on the Fresnel equation,13 the reflectance Rp at the
prism–sample interface for the P-polarized wave is given by

Rp ¼
� ½n2rð1− k2Þcos θ−npu2�2þ ½2n2rk cos θ−npv2�2
½n2rð1− k2Þcos θþnpu2�2þ ½2n2rk cos θþnpv2�2

�
2

;

(2)

where nr and k are the real part and the imaginary parts of
the CRI of sample, respectively. u2 and v2 are two intermediate
variables that satisfy

2u22 ¼ n2rð1 − k2Þ − n2p sin2 θ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n2rð1 − k2Þ − n2psin2 θ�2 þ 4n4rk2

q
; (3)

2v22 ¼ −½n2rð1 − k2Þ − n2psin2θ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n2rð1 − k2Þ − n2psin2θ�2 þ 4n4rk2

q
: (4)

Then the reflectance at the prism–sample interface can be
calculated as

Rm ¼ I∕I0ð1 − RlÞ2; (5)

Rl ¼
�
np cos α − cos½arcsisinðsin α∕npÞ�
np cos αþ cos½arcsisinðsin α∕npÞ�

�
2

; (6)

where I and I0 are the light powers of the emergent light and
incident light, respectively, and Rl is the power loss at the air–
prism interface or prism–air interface.

A nonlinear fitting program based on the Nelder–Mead sim-
plex method21 is used to simultaneously calculate the nr and k.
For the tissue sample, the nr is the average or effective RI of
the tissue components. The consistency between the measured
data and fitting curve is described by E2, defined as E2 ¼
1 − ΣN

i¼1ðRm;i − RiÞ2∕ΣN
i¼1ðRm;i − R̄Þ2, where Rm;i is the i’th

measured reflectance calculated by Eq. (5), Ri is the i’th calcu-
lated reflectance, and R̄ is the mean value of measured reflec-
tance overN values of the incident angle. The value of E2 ranges
from 0 to 1 and it is closer to 1 when a reliable fitting is obtained.
The reflectance curve of porcine muscle was measured at time
points of 1, 2, 3, 4, 5, 6, 7, 8, and 10 h during dehydration.
Similar measurements were repeated for three times.

The schematic diagram of the transmittance measurement
setup is shown in Fig. 2. A He-Ne laser is used as the incident
light. PD1 is used as a monitor to detect the reflected beam from
the beam splitter M. The transmitted light vertically passes
through the slide glass and the tissue and then is collected by
an integrating sphere. PD2 is used to detect the emergent
light from the integrating sphere. Transmittance measurement
was also performed to investigate the OC effect of natural dehy-
dration. The transmittance of the dehydrated porcine muscle was
recorded with a time interval of 1 min for a total of 7 h. Similar
measurements were repeated for three times.

3 Results and Discussion

3.1 Results

The measured reflectance curves of natural dehydrated porcine
muscle are shown in Fig. 3. The reflectance curve of the porcine
muscle shifts toward the right direction with the increase in
dehydration time. Based on the nonlinear fitting program men-
tioned above, all curves are well fitted with E2 > 0.996 and
the CRI values are determined, as demonstrated in Fig. 4.
The nr increases continuously from 1.351 to 1.376 during a
10 h measurement, while k does not increase continuously.
During the first stage of natural dehydration (from 0 to 4 h),
k increases from 0.0015 to 0.0018. During the second stage

Fig. 1 Schematic diagram of the complex refractive index (CRI)
measurement setup.

Fig. 2 Schematic diagram of the transmittance measurement setup.
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(from 4 to 10 h), k decreases to 0.0011. Finally, k becomes
smaller than the initial value.

From the result of the transmittance measurement in Fig. 5,
we find that the transmittance increases from about 0.15 to
0.38 in 7 h with a varied growth rate. The growth rates are
about 0.003, 0.007, 0.022, 0.037, 0.061, and 0.077 at each 1-h
time interval.

3.2 Discussion

The increase of nr of porcine muscle during natural dehydration
is observed, as shown in Fig. 4. A similar phenomenon can be
found in Refs. 22 and 23. The optical parameters of tissue are
known to depend on the water content,24 and both the natural
dehydration and compression-induced dehydration can lead
to an increase of nr.

25 For the fresh porcine muscle, the mea-
sured nr is 1.351, which is smaller than the value of 1.367 pro-
vided in Ref. 19. This might be because the tissue fluid exuded
out from the damaged tissue and increased the fraction of fluid
at the prism–tissue interface. In our early study, the tissue
fluid may lead to a hump in the reflection curve.20 However,
the hump is not observed in this study, as shown in Fig. 3.
The main reason may be the difference of tissue preparation.
In this study, we used fresh porcine muscle without a freezing
treatment, and high pressure was avoided when we attached the
tissue to the prism.

It can be seen from Fig. 5 that the growth rate of transmit-
tance is slow during the first few hours and then becomes faster.
A similar phenomenon can be found in Ref. 4. From the
Bouguer–Beer–Lambert law, collimation transmittance in tissue
can be calculated by A ¼ expð−μtLÞ, where L is the thickness.26

Thus, both the thickness and the extinction coefficient influ-
ence the transmittance. The tissue will shrink due to the
water loss and internal structure change, and the shrinkage
will increase the transmittance. After 7 h, the thickness of
the muscle reduced to about 74%. Considering the change ten-
dency of k observed in this study, we can deduce that the
effects of thickness and k on transmittance are opposite during
the first stage and then become the same in the second stage.
The opposite effects slow down the growth rate of transmittance
in the first stage.

In order to explain the change tendency of k during dehydra-
tion, the heuristic particle-interaction model is applied. For a
dense distribution of scattering particles, the reduced scattering
coefficient (μ 0

s) is related to the reduced scattering cross section
(σ 0

scm
2) by μ 0

s ¼ ϕð1 − ϕÞσ 0
s∕V, where ϕ is the volume fraction

of the scattering particles and V is the volume of a single scatter-
ing particle. The parabolic relationship between μ 0

s and ϕ is
demonstrated in Fig. 6. Therefore, the volume fraction of scat-
ters in tissue during dehydration needs to be estimated.

Fig. 3 Reflectance curves of porcine muscle during dehydration.
Points: measured reflectance. Line: fitted curves.

Fig. 4 Change of CRI of porcine muscle during dehydration.

Fig. 5 Transmittance of porcine muscle and the growth rate during
dehydration.

Fig. 6 Relationship between the reduced scattering coefficient and
scattering particle volume fraction.
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Five porcine muscle samples were weighed and then put into
a temperature humidity chamber at 40°C for 72 h to obtain fully
dehydrated samples. The weight fractions with an average of
about 28% are calculated, as listed in Table 1. According to
Ref. 27, the density of dry matter from bovine muscle is
ρðg∕cm3Þ ¼ 1.551 − 0.349 × 10−3T, where T is the absolute
temperature of the sample (measured in Kelvin). We use the
data at 20°C (293 K) to estimate the density of fully dehydrated
porcine muscle, and the volume fraction of water is deduced as
about 0.788, which is close to the value 0.756 in rat skeletal
muscle published in Ref. 28. So, the change of μ 0

s of the tissue
should obey the parabolic form to some extent during dehydra-
tion. Assuming no change in RI of the ground substance and the
size of the scattering particles in muscle, the change of the
anisotropy factor g is negligible;29 so, μs is approximately linear
with μ 0

s. According to Ref. 26, for muscle tissue, μs is much
larger than μa in the visual spectral region. We may infer that
k should obey the same change tendency as μs, which matches
well with the result obtained in this study. After 10 h dehydra-
tion, the k becomes smaller than the initial value, which reveals
that the tissue is optically clarified. Moreover, structural modi-
fication or dissociation of collagen can also influence the OC
result.30 Therefore, the CRI is a more suitable parameter to
evaluate the OC effect.

3.3 Error Analysis

It is impossible to obtain two pieces of muscle tissue with
exactly the same parameters and dehydration speed, but for
different measurements, a similar phenomenon is observed.
The time of each CRI measurement is about 1 min, which is
much less than the dehydration time, so the change of the tissue
can be ignored during each measurement. Therefore, most
experimental errors come from the errors of incident angle
and the power fluctuation. Error of the incident angle at the
prism–tissue interface, Δθ, can be calculated by the differential
of Eq. (1), which is

Δθ ¼
���� ∂θ∂β

����Δβþ
���� ∂θ∂α

����Δαþ
���� ∂θ
∂np

����Δnp: (7)

The high resolution rotation stage has a minimum incremen-
tal motion of 3.5 μrad and a design resolution of 0.59 μrad; so
the error caused by the rotation stage is negligible. There is an
error of about 0.01 deg when we adjust α to zero. Δnp of the
prism is less than 0.0002. Δβ ¼ 0.0002 rad. Δθ is calculated as
0.018 deg, which corresponds to an error of about 0.001 of nr.

The error of k is highly related to the power fluctuation. After
being calibrated, the power fluctuation measured by PD2 is less
than 0.5%, which corresponds to an error of 0.0001 of k.

4 Conclusion
Our experiment uses the TIR method as a useful approach to
evaluate the OC effect and shows that CRI is an important opti-
cal parameter to understand the OC process. The results also
indicate that natural dehydration can provide better tissue optical
clarity, while the change of CRI is complicated. The real part of
the CRI of porcine muscle increases continuously during the
dehydration time, but the imaginary RI initially increases and
then decreases. After enough time, the imaginary part of the
CRI becomes much smaller than the initial value, revealing
that a better tissue optical clarity is obtained. Further studies
about OC are expected.
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