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Abstract. Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path,
are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM),
significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional
stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for
both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the
NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being
multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multi-
directional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional
LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively
removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational
stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak sig-
nal-to-noise ratio, showing an improved noise removal when using the MDSR method. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.10.106005]
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1 Introduction
Light sheet fluorescence microscopy (LSFM) is a high-resolu-
tion volumetric fluorescence microscopic technique which
was selected as the “Method of the year” in 2014 by Nature
Methods.1–4 Due to its large imaging scale and high imaging
speed, LSFM is widely applied in embryo imaging,5 neurology,6

vascular analysis,7 tumor treatment evaluation,8,9 and even
whole-body imaging.10,11 However, the accurate elimination of
stripe artifacts is a limitation in the application of LSFM. These
stripe artifacts are caused by high-absorption and/or scattering
structures in the excitation light path such as impurities/bubbles
outside the sample or a high light absorption/scattering structure
inside the sample. Note that the appearance of bubbles often
happens when dealing with highly viscous solutions such as
tissue clearing solutions SeeDB12 and CUBIC.10

Unidirectional LSFM is the simplest LSFM system, in which
the sample is illuminated from a single 90-deg angle with
respect to the imaging objective. When observing large or dense
samples, the unidirectional LSFM suffers the effects of stripe
artifacts the most.13,14 As shown in Fig. 1(a), stripe artifacts
in unidirectional LSFM occur in the same direction of the

illumination. Several destriping algorithms have been developed
for unidirectional LSFM. Many methods suppress stripe noise in
the spatial domain by accounting for the distribution of the
stripes according to a reference noise model, including histo-
gram matching15 or moment matching16. Other methods treat
destriping as a restoration problem and formulate an optimum
problem to solve it.17–19 This is the case of the variational
stationary noise remover (VSNR) method, which successfully
removes stationary noise such as stripes.18 In addition, Münch
et al.20 combined the wavelet and fast Fourier transform (wave-
let-FFT method) to filter out the stripe noise. Furthermore, our
group has developed a vertically scanned LSFM method to
improve the image quality and reduce stripes in unidirectional
LSFM.21

In addition to these algorithms, bidirectional and multidirec-
tional LSFMwere developed to circumvent the stripe problem at
the system level. Bidirection uses two parallel light sheets from
both sides of the sample to remove the stripes.2 Similarly, multi-
directional LSFM averages images from different illumination
directions and further removes the stripes.22 Although these
improvements generate homogenous fluorescence excitation,
they still suffer from stripe artifacts in dense or low brightness
samples.11 In Fig. 1(b), the image of a mouse heart scanned with
a multidirectional system is shown and the remaining stripes are
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indicated with red arrows. Currently, there are few destriping
methods for multidirectional LSFM. Moreover, most of the des-
triping algorithms in unidirectional LSFM will fail to deal with
the multidirectional stripes since the stripes in multidirectional
LSFM have complex noise patterns. Therefore, a general des-
triping method for both unidirectional and multidirectional
LSFM is still needed.

In this paper, we propose a multidirectional stripe remover
(MDSR) method for both unidirectional and multidirectional
LSFM images, making use of nonsubsampled contourlet trans-
form (NSCT). The commercial LSFM system (Ultramicroscope
II, Lavision Biotec.) used in this paper has six light sheets with
every two placed in opposite directions, at 0-deg, 15-deg, and
−15- deg angles. NSCT is an image geometric information
extraction method with the advantage of being totally shift
invariant23 and it is widely used in image denoising and
enhancing.24 The experimental results on a wide range of sam-
ples (such as mouse colon, heart, and brain) presented here show
that MDSR effectively removes most of the stripe noise in both
unidirectional and multidirectional LSFM. Moreover, a com-
parison and quantitative analysis revealed a higher destriping
efficiency of the MDSR method when compared to VSNR and
wavelet-FFT.

This paper is organized as follows. Section 2 introduces the
details of our method in three steps and Sec. 3 shows the

comparative experiments with VSNR and the wavelet-FFT
method. The validation experiment on custom-made and com-
mercial systems, unidirectional and multidirectional LSFM are
presented in Sec. 4. The conclusions and future directions are
covered in Sec. 5.

2 Algorithm
In an LSFM system, the stripes are parallel to the direction of
the light sheet. The overall idea of our MDSR method is to split
the stripes from the image and then eliminate them. Figure 2
shows the three-step workflow of MDSR including NSCT
decomposition, FFT filtering, and NSCT reconstruction. A
wheel-shaped graph is used as an input image and the inside
lines simulate stripes in different directions. The purpose is
to remove horizontal stripe artifacts.

In the first step, NSCT decomposition splits the input image
into subimages with different directions and scales. NSCT is an
efficient multidirection and multiscale image edge representa-
tion method. Similar to the wavelets method, filter banks are
also used in NSCT. The difference is that the wavelets method
decomposes an image into only three directions: horizontal,
vertical, and diagonal, whereas the NSCT considers more direc-
tions. More specifically, the input image is first decomposed
into one low-pass subband layer and five high-pass subband
layers, as shown in Fig. 2. Different layers indicate different
scales. Each high-pass subband layer has eight subimages, rep-
resenting components in eight directions. The stripe noise is
often in a relatively fixed direction and most of its information
is included in the high-pass subimage parallel to its direction.
The red circle with a line inside indicates the decomposition
direction of the high-pass subimage. Therefore, the NSCT step
manages to decompose the input image into subimages with
different directions and scales. The number of decomposition
layers and directions is manually set to five and eight by visual
guidance in MDSR. Note that when the two parameters are
large, the model is accurate but time-consuming. In MDSR,
the number of decomposition layers increases from one and
stops when the stripe artifacts in the low-pass subimage are not
visible. The number of directions is selected in a similar way;
we found that eight is an appropriate value.

Fig. 1 The stripe problem in LSFM images: (a) a slice of mouse colon
imaged with a custom-made unidirectional LSFM system and (b) a
slice of mouse heart imaged with a commercial multidirectional
LSFM system. The red arrows indicate stripe noises.

Fig. 2 Workflow of removing horizontal stripes with MDSR method.
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In the second step, FFT filtering is performed on these high-
pass subimages. Filtering in the horizontal direction is done in
the frequency domain to remove the horizontal stripe coeffi-
cients. Then an inverse FFT is performed to update the subi-
mages. In the NSCT reconstruction step, the enhanced image
is generated by using NSCT reconstruction on these updated
subimages in the space domain. The details of the proposed
method are introduced as follows.

2.1 Nonsubsampled Contourlet Transform
Decomposition

The first step of MDSR is to decompose an input image to multi-
directional and multiscale subimages by using NSCT.25 NSCT is
constructed based on a nonsubsampled pyramid (NSP) and non-
subsampled directional filter banks (NSDFB). The flowchart of
NSCT decomposition in our method is shown in Fig. 3. An
LSFM image is first filtered by NSP generating high- and
low-pass subband subimages, which is similar to a Laplacian
pyramid method. The low-pass image is then iteratively decom-
posed into high- and low-pass subimages. Multiscale subimages
are obtained after the NSP process. After this process, NSDFB
splits each high-pass subimage into different directional wedges,
since NSDFB is a binary tree structured filter bank.

In the NSCT decomposition step, the vector ν̄ ∈ Nm denotes
the decomposition parameter of all layers in NSCT. m indicates
the total number of decomposition layers. ν̄ðiÞ means the
decomposition level of NSDFB in layer i and the NSDFB
will decompose the high-pass subband subimage in layer i to
2v̄ðiÞ directions iteratively according to the binary tree structure
of NSDFB. Each high-pass subimage has a scale value and a
direction angle. The decomposition directions in layer i are
denoted as θði; lÞ, where l ¼ 1; : : : 2v̄ðiÞ and its corresponding
subimage is represented as fi;θði;lÞðx; yÞ. NSCT decomposition
of the input LSFM image generates a series of subimages rep-
resenting different geometric information. Benefiting from NSP’s
multiscale property and NSDFB’s multidirectional property, the

NSCT is suitable for generating subimages containing most of
the stripe noise with fixed directions.

2.2 Fast Fourier Transform Filtering

The second step of MDSR is to filter all high-pass subimages to
suppress the stripe noise. Given a unidirectional LSFM system,
the directions of the light sheet and stripe are the same, in which
case we assume that the stripes are at a fixed angle θ0. The
stripes in multidirectional LSFM images can be viewed as an
overlay of stripes with several fixed angles. Given a single stripe
artifact with a fixed direction, it has a low response in its hori-
zontal direction and a high response in its vertical direction in
the frequency domain.26 Figures 4(a)–4(c) show examples of
regular line stripes, horizontal, and nonhorizontal anisotropy

Fig. 3 The flowchart of NSCT decomposition.

Fig. 4 Different stripe models and their FFT images: (a) regular hori-
zontal lines, (b) horizontal stripes generated by anisotropy Gaussian
function, (c) nonhorizontal stripes generated by anisotropy Gaussian
function with angle π∕4, and (d–f) FFT images of (a–c).

Journal of Biomedical Optics 106005-3 October 2016 • Vol. 21(10)

Liang et al.: Stripe artifact elimination based on nonsubsampled contourlet transform. . .



Gaussian stripes. The real stripes in unidirectional LSFM are
similar to Fig. 4(b). As shown in Fig. 4(e), the two-dimensional
(2-D) FFT image presents a high response in the vertical direc-
tion. Moreover, as shown in Figs. 4(c) and 4(f), 2-D FFT
has rotational invariance, which means if we rotate the image
at an angle, its Fourier transform will also rotate the same
angle. This effect means that stripe frequency coefficients con-
centrate on a narrow frequency band, which may be suppressed
to reduce the contribution of these particular stripe artifacts. The
concept of damping the values of these frequency coefficients is
an important part of several existing stripe removal methods.20,26

We name Fi;θði;lÞðu; vÞ as the Fourier transform of the sub-
image fi;θði;lÞðx; yÞ. For stripes with a fixed direction θ0 in sub-
image fi;θði;lÞðx; yÞ, their Fourier coefficients are distributed
mainly around the line in direction π∕2þ θ0 passing through
Fi;θði;lÞðu ¼ 0; v ¼ 0Þ in the Fourier domain. We suppress the
stripes in the frequency domain by using the following equation:
EQ-TARGET;temp:intralink-;e001;63;565

wðu; vÞ ¼ 1 − e−0.5�ũ2∕σ2 ;

ũ ¼ u cosðπ∕2þ θ0Þ þ v sinðπ∕2þ θ0Þ; (1)

where σ is the standard deviation of the Gaussian function
controlling the suppression degree of the FFT coefficients.
The shape of wðu; vÞ is like a groove and the bottom is the line

with angle π∕2þ θ0 passing through the origin point where the
value of wðu; vÞis 0. wðu; vÞ decreases from 1 to 0 when moving
away from the line. The groove grows wider when σ increases,
thus more frequency values will be suppressed. The parameter σ
is selected manually according to the destriping performance.

Since suppression is performed on subimages with different
decomposition directions, the FFT filter is modified according
to the decomposition direction θði; lÞ. When θði; lÞ is close to
the stripe direction θ0, the subimage fi;θði;lÞ contains most of
the stripe information and is greatly suppressed. The modified
frequency-domain weight function is given as

EQ-TARGET;temp:intralink-;e002;326;631

σ 0 ¼ e−0.5�½θ0−θði;lÞ�2∕σ2aσ; wðu;vÞ¼ 1−e−0.5�ũ2∕σ 02

F 0
i;θði;lÞðu;vÞ¼Fi;θði;lÞðu;vÞ�wðu;vÞ; (2)

where σa adjusts the suppression weight according to the
deviation between θði; lÞ and θ0. F 0

i;θði;lÞ represents an updated
NSCT subimage in layer i in the frequency domain. σa is set
manually to 0.8 by visual assessment. The FFT filtering is
done on all high-pass subimages in the NSCT. Then we use
inverse FFT transform to get new subimages f 0

i;θði;lÞ.
Note that in unidirectional LSFM, θ0 is equal to 0 deg in

MDSR, and the FFT filtering is performed once on the

Fig. 5 Comparative experiments of the three methods: (a–c) original image with horizontal line noise,
anisotropic Gaussian noise at angle 0 deg and 3π∕32 deg, (d) is 0 deg and 3π∕32 deg mixed anisotropic
Gaussian noise, (e–h) our results for (a–d), (i–l) the VSNR results for (a–d), and (m–p) the wavelet-FFT
results for (a–d). Red arrows indicate some remaining stripes.
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subimages. When dealing with multidirectional LSFM, FFT
filtering is repeated several times according to the angle number
of the stripes. Therefore, the repeat times of FFT filtering are
adjusted to LSFM hardware. The multidirectional LSFM system
used in this paper has three angles (0 deg, 15 deg, −15 deg). To
remove these stripes, making use of the expected stripe angles
for the multiangle configuration shown here, FFT filtering is
repeated three times on the subimages using one angle during
each iteration.

2.3 Nonsubsampled Contourlet Transform
Reconstruction

The last step of the MDSR method is the reconstruction of the
enhanced image with these updated subimages. All high-pass
subband subimages experience FFT filtering and the stripe com-
ponents are suppressed. NSCT can reconstruct the image with
high- and low-pass subimages similar to the wavelet method.
The NSCT reconstruction is performed on the updated subi-
mages f 0

i;θði;lÞ, then we get the final image.

3 Comparative Experiment
To validate the MDSR method, we perform a comparative
experiment on an image where we introduce artifacts in a con-
trolled manner, by adding random horizontal lines as anisotropic
Gaussian noise. Moreover, the stripes in multidirectional LSFM
are simulated as an overlay of anisotropic Gaussian stripes with
two fixed angles [shown in Fig. 5(d)]. We then compared our
denoising approach with both VSNR18 and wavelet-FFT20 on

these images. As shown in Figs. 5(m)–5(p), wavelet-FFT effec-
tively reduces the horizontal lines or stripes, but it cannot
remove the nonhorizontal noise since the wavelet is limited
in decomposition directions. The VSNR method needs a preset
structure noise model, thus we set its noise model the same as
with the noise added to the original images. VSNR removes
most of the stripe noise, but there are still light stripes remaining
in the images. In contrast, MDSR performs well in all four
situations, indicating that MDSR can effectively remove stripe
noise.

In addition to the visual contrast, peak signal-to-noise ratio
(PSNR) is used for the quantitative evaluation of the three meth-
ods. PSNR is commonly used as a measure of image quality.
It is computed with the equation below:
EQ-TARGET;temp:intralink-;e003;326;598

PSNR ¼ 10 � log10ðMAX2
I∕MSEÞ

MSE ¼ 1

mn

Xm−1

i¼0

Xn−1

j¼0

½uði; jÞ − u0ði; jÞ�2; (3)

where MAXI is maximum image gray value, u is the real signal
image without noises, and u0 is the noise image. As shown in
Fig. 6, the PSNR evaluation indicates that MDSR performs
better than wavelet-FFT on the four input images and is similar
to VSNR. MDSR increases the PSNR value by about 10 db.
The experiment is done with 64-bit MATLAB®2013a, CPU
3.5 GHz, 8-GB memory. Test image size is 512 × 512 pixels.
Average time cost for MDSR, wavelet-FFT, and VSNR is
3.70, 0.09, and 8.99s, respectively. The maximum number of
iteration steps for VSNR is set as 100. Greater iteration steps
using VSNR would give better results but at the cost of longer
computing times. Note that the MDSR method takes more time
than wavelet-FFT, but runs faster than the iterative method.

4 Applications
In this section, MDSR is validated in real LSFM images from
both a custom-made unidirectional LSFM system and commer-
cial multidirectional LSFM system. Four samples were imaged,
including a mouse colon, two mouse brains, and a mouse heart.
All of these samples were optically cleared by BABB (a solution
of benzyl benzoate and benzyl alcohol at a rate of 2∶1).27,28
The mouse colon sample was stained with propidium iodide,
as described previously.28 The vascular network of the mouse
brain was immunolabeled with Alexa Flour488 (AF488) using
the iDISCO method.29

All animals were purchased from the Department of
Experimental Animals, Peking University Health Science
Center. All animal experiments were performed in accordance
with the guidelines of the Institutional Animal Care and Use

Fig. 6 Evaluation of the PSNR values of noise images, VSNR results,
wavelet-FFT results, and our results.

Fig. 7 Destriping results on a unidirectional LSFM image of the colon: (a) input LSFM image, (b) MDSR,
(c) VSNR, and (d) wavelet-FFT results.
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Fig. 8 The vertical line intensity profiles of Fig. 7 at column 250 and from row 260 to 380. The scale of
vertical axis is 103. Black curve and magenta curve are the line intensity profiles of original image and
recovered images. (a–c) are the lines of MDSR, VSNR, and wavelet-FFT method, respectively, and (d) is
the original LSFM image. The white line in (d) shows the sampling line. P1, P2, and P3 indicate three
points at row 274, 313, and 359.

Fig. 9 Destriping results on mouse brain vessel images: (a) input LSFM image, (b) zoomed image of (a),
(c and d) results of MDSR, and (e and f) results of VSNR.
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Committee at Peking University. The research procedures were
approved by the Key Laboratory of Molecular Imaging, Chinese
Academy of Sciences (CAS).

In the first experiment, a mouse colon sample is stained with
propidium iodide and optically cleared with BABB.28 Figure 7
shows an LSFM image of the colon collected by a custom-made
unidirectional LSFM (excitation laser 473 nm, emission light
filter 605∕140 nm, exposure time 20 ms, and laser power about
100 mW). The description of the system are detailed in Refs. 28,
30, and 31. The results of MDSR, VSNR, and wavelet-FFT are
shown in Figs. 7(b)–7(d). The VSNR fails to remove all the
stripes and there are still light stripes remaining. Both MDSRs
and wavelet-FFT reduce most of the visible stripes. Figure 8
shows the vertical line intensity profiles of the three results in
Fig. 7. P1, P2, and P3 indicated by red arrows are points in three
dark stripes at column 250. As shown in Figs. 8(a)–8(c), MDSR
and wavelet-FFT methods improve the gray values of the three
points notably, but VSNR fails to recover these points. There-
fore, MDSR and wavelet-FFT perform better than VSNR in this
experiment.

In the second experiment, a hemisphere of a 5-day old mouse
was cleared with the iDISCO method29 and stained for fluorescent
imaging. CD31 (Platelet endothelial cell adhesion molecule-1)

was used as a marker for the brain vessels. Rat antimouse CD31
antibody (BD Biosciences, San Jose, California) and a secon-
dary antibody donkey antirat IgG conjugated with Alexa Fluor
488 (Life Technologies, Carlsbad, California) were used for
immunohistochemical staining. The sample was imaged with
a commercial multidirectional system Ultramicroscope II made
by Lavision Biotec (excitation light filter 488∕40 nm, emission
light filter 525∕50 nm, exposure time 200 ms, and laser power
about 100 mW). Figure 9(a) shows an image of the brain and
Fig. 9(b) shows a zoomed area of the image. Although six light
sheets were used in the commercial system, there are still evi-
dent stripe artifacts present in the LSFM image. As shown in
Figs. 9(c) and 9(d), most of the visible stripes are removed
by using MDSR. In contrast, as shown in Figs. 9(e) and 9(f),
the VSNR method fails to remove all of the stripes, showing
that MDSR performs better than VSNR when denoising multi-
directional fluorescent LSFM images. Note that the wavelet-
FFT method has not been tested on the multidirectional LSFM
image since it is not suitable for nonhorizontal stripes.

MDSR was also tested in images where autofluoresence was
used as a source of contrast. Figure 10 shows autofluorescence
images (excitation light filter 488∕40 nm, emission light filter
525∕50 nm, exposure time 360 ms, and laser power about

Fig. 10 Destriping results of autofluorescent images: (a) autofluorescent image of a mouse brain,
(b) zoomed image of the mouse brain, (c) autofluorescent image of a mouse heart, (d) zoomed
image of the mouse heart, (e–h) our results of (a–d), and (i–l) VSNR results of (a–d).
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100 mW) of a mouse brain (a–j) and heart (c–l). These samples
were not stained with any fluorescent dyes but were directly
cleared with BABB. The images were collected by using the
commercial multiangle system. As shown in Figs. 10(e)–10(f),
MDSR effectively removes nearly all of the stripes and recovers
the details of the brain. In contrast, there are still stripes remain-
ing in the VSNR results, shown in Fig. 10(i) and 10(j). More-
over, as shown in Figs. 10(g), 10(h), 10(k), and 10(l), the
contrast results for the mouse heart also demonstrate that
MDSR can efficiently remove stripe artifacts. The average
time cost of Figs. 9 and 10 is 171 s for MDSR and 522 s for
VSNR with the same running environment as the one used in
Fig. 5.

5 Conclusion
This paper proposes a destriping method based on NSCT for
both unidirectional and multidirectional LSFM. The idea of
our approach is to filter stripes in the frequency domain, and
benefiting from NSCT’s multidirectional and multiscaling prop-
erties, to obtain an enhanced suppression of most stripes in
LSFM images. Moreover, quantitative contrast experiments
were performed with the VSNR and the wavelet-FFT methods,
and the results showed that MDSR had a better performance
both visually and quantitatively with the PSNR value. In addi-
tion, extensive validations were performed on MDSR including
custom-made and commercial systems on unidirectional and
multidirectional LSFM images. These experiments show that
MDSR is robust in different situations. Furthermore, MDSR
could also be used in other imaging modalities suffering from
stripe artifacts such as in atomic force microscopy, scanning
electron microscopy, remote sense images, or spectroradiometry.

Even though MDSR showed a good suppression of stripe
noise, we believe there is still room for improvement. For
example, MDSR is time-consuming, which might represent
a problem when dealing with large three-dimensional LSFM
volumes. Another problem of MDSR is that it may introduce
pseudo-Gibbs artifacts around singularities. These phenomena
are quite common in transform domain-based methods.32,33

Although shift-invariance of NSCT mitigates this problem,23

the pseudo-Gibbs artifacts still appear. Future work will opti-
mize the speed of the reconstruction algorithm making use of
parallel computing and study pseudo-Gibbs artifacts free
method. Moreover, the number of decomposition layers and
directions are set manually to five and eight by visual guidance
in MDSR. An automated method deciding these parameters
should be studied in the future.
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