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Abstract. Diffuse correlation spectroscopy (DCS) is a noninvasive method to quantify tissue perfusion from
measurements of the intensity temporal autocorrelation function of diffusely scattered light. However, DCS auto-
correlation function measurements in tissue better match theoretical predictions based on the diffusive motion of
the scatterers than those based on a model where the advective nature of blood flow dominates the stochastic
properties of the scattered light. We have recently shown using Monte Carlo (MC) simulations and assuming
a simplistic vascular geometry and laminar flow profile that the diffusive nature of the DCS autocorrelation
function decay is likely a result of the shear-induced diffusion of the red blood cells. Here, we provide theoretical
derivations supporting and generalizing the previous MC results. Based on the theory of diffusing-wave spec-
troscopy, we derive an expression for the autocorrelation function along the photon path through a vessel
that takes into account both diffusive and advective scatterer motion, and we provide the solution for the
DCS autocorrelation function in a semi-infinite geometry. We also derive the correlation diffusion and correlation
transfer equation, which can be applied for an arbitrary sample geometry. Further, we propose a method to
take into account realistic vascular morphology and flow profile. © 2017 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.22.2.027006]
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1 Introduction
Diffuse correlation spectroscopy (DCS) is a method for meas-
uring blood flow based on diffusing-wave spectroscopy (DWS)
in heterogeneous multiple-scattering media.1,2 By measuring the
intensity fluctuations of light diffusely reflected from tissue,
DCS offers a measure of microvascular blood flow and has
been successfully validated against other blood flow measure-
ment techniques, such as arterial spin labeling, magnetic
resonance imaging,3–6 Doppler ultrasound,7,8 xenon-enhanced
computed tomography,9 and fluorescent microspheres.10

The analysis of the DCS signal obtained in the validation
studies cited above implies that diffusion-like red blood cell
(RBC) motion largely defines the shape of the intensity autocor-
relation function, while the effect of the advective (sometimes
referred to as convective) RBC motion is significantly
smaller.11,12 Lacking a first principles-based understanding of
the nature of the measured signal, DCS has been employed
to provide a “blood flow index” obtained by fitting the intensity
autocorrelation decay for the RBC “diffusion coefficient,”which
has been shown to correlate well with the relative changes in
blood flow as mentioned above.

Recent articles have indicated that shear-induced diffusive
RBC motion may contribute to the DCS signal,12,13 providing
a possible mechanistic explanation for the observed diffusion-
like RBC motion in the decay of the intensity autocorrelation
function. Here, we provide a theoretical model for the DCS sig-
nal based on DWS that includes both advective RBC motion

along the blood vessels and shear-induced RBC diffusion.
In a recent article, we have shown using Monte Carlo (MC)
simulations and assuming a simplistic vascular geometry and
laminar flow profile that the diffusive nature of the decay of
the DCS autocorrelation function is likely the result of the
shear-induced diffusion experienced by RBC during vascular
transport.14 Here, we provide theoretical derivations supporting
and generalizing the previous MC results. We derive expressions
for the autocorrelation function along the photon path that take
into account both diffusive and advective motions of the scatter-
ing particles and provide the solution for the DCS autocorrela-
tion function in a semi-infinite geometry. Our model predicts
that for all source–detector separations commonly applied in
DCS measurements, the DCS signal is, as expected, dominated
by the shear-induced RBC diffusion. We also provide an expres-
sion for the DCS signal in a realistic vascular network with
a heterogeneous distribution of vessels with different diameters
and average blood flows. Finally, we derive the expressions for
the correlation transfer equation (CTE) and correlation diffusion
equation (CDE), which can be used to model the DCS signal in
tissue with a complex geometry and heterogeneous blood flow
distribution.

2 Phase Accumulation in a Vessel
In this section, we consider the optical phase accumulation
along the scattering path through a single blood vessel.
We assume that a partial wave scatters first from a scatterer at
location r0 outside the vessel, then experiences N consecutive
scattering events from RBCs located at r1; · · · rN inside the
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vessel, and finally exits the vessel scattering at location rNþ1

outside the vessel. The accumulated optical phase ϕðtÞ along
this path is given as

EQ-TARGET;temp:intralink-;e001;63;719ϕðtÞ ¼
XNþ1

i¼1

k0njriðtÞ − ri−1ðtÞj; (1)

where n is an optical index of refraction, k0 ¼ 2π∕λ0, λ0 is the
wavelength of light in a vacuum, and jrj represents the vector
magnitude. Equation (1) can be approximated as

EQ-TARGET;temp:intralink-;e002;63;639ϕðtÞ ≈
XNþ1

i¼1

k0nli;0 þ
XNþ1

i¼1

k0nΩ̂i · ½ΔriðtÞ − Δri−1ðtÞ�; (2)

where Ω̂i ¼ ðri;0 − ri−1;0Þ∕li;0, ri;0 is i’th scatterer position at
t ¼ 0, li;0 ¼ jri;0 − ri−1;0j, riðtÞ ¼ ri;0 þ ΔriðtÞ, and ΔriðtÞ is
a small displacement of the i’th scatterer at time t with respect
to its original position ri;0. If we further assume that only scat-
terers inside the vessel exhibit motion [i.e., Δr0ðtÞ ¼ 0 and
ΔrNþ1ðtÞ ¼ 0], then it follows from Eq. (2) that the difference
of the accumulated phaseΔϕðt; τÞ ¼ ϕðtþ τÞ − ϕðtÞ is given as

EQ-TARGET;temp:intralink-;e003;63;512Δϕðt; τÞ ¼ k0n0
XN
i¼1

Δriðt; τÞ · ðΩ̂i − Ω̂iþ1Þ; (3)

where Δriðt; τÞ ¼ Δriðtþ τÞ − ΔriðtÞ.
The temporal electric field (E) autocorrelation function g1ðτÞ

is computed as g1ðτÞ ¼ hEðtÞE�ðtþ τÞi ¼ hexp½−iΔϕðt; τÞ�i,
where hi represents an ensemble average and i is the imaginary
unit. In the case of a small phase difference term Δϕðt; τÞ,
the autocorrelation function can be approximated as g1ðτÞ ≈
exp½− 1

2
FðτÞ�, where FðτÞ ¼ hΔϕ2ðt; τÞi.

To compute FðτÞ, we first assume that Δriðt; τÞ in the vessel
can be expressed as

EQ-TARGET;temp:intralink-;e004;63;369Δriðt; τÞ ¼ Δri;DðτÞ þ viτ; (4)

where vi represents a laminar RBC velocity of the i’th scatterer
and Δri;Dðt; τÞ accounts for the diffusive RBC motion due to
shear flow. We can now express FðτÞ as
EQ-TARGET;temp:intralink-;e005;63;308FðτÞ ¼ FDðτÞ þ FVðτÞ þ FD;VðτÞ; (5)

where a diffusion term FDðτÞ is given as

EQ-TARGET;temp:intralink-;e006;63;269FDðτÞ ¼ k20n
2

��XN
i¼1

Δri;DðτÞ · ðΩ̂i − Ω̂iþ1Þ
�2�

; (6)

a velocity term FVðτÞ is given as

EQ-TARGET;temp:intralink-;e007;63;213FVðτÞ ¼ k20n
2

��XN
i¼1

τvi · ðΩ̂i − Ω̂iþ1Þ
�2�

; (7)

and a mixed term FD;VðτÞ is given as
EQ-TARGET;temp:intralink-;e008;63;158

FD;VðτÞ ¼ k20n
2

*
2

"XN
i¼1

Δri;DðτÞ · ðΩ̂i − Ω̂iþ1Þ
#

×

"XN
j¼1

τvj · ðΩ̂j − Ω̂jþ1Þ
#+

: (8)

Due to isotropic diffusive motion, the diffusive and advective
motions are uncorrelated; thus, the mixed term FD;VðτÞ ¼ 0.

2.1 Diffusion Term

To compute the ensemble average in Eq. (6), we first consider
that the probability density function for diffusive RBC motion
can be approximated as15

EQ-TARGET;temp:intralink-;e009;326;667P½Δri;DðτÞ� ¼
1

ð4πDiτÞ3∕2
exp

�
−
jΔri;DðτÞj2

4Diτ

�
; (9)

where Di is the RBC diffusion coefficient due to the shear flow
at location ri;0. Since the diffusive displacements Δri;DðτÞ and
Δrj;DðτÞ of RBCs involved in consecutive scattering events are
uncorrelated, Eq. (6) can be reduced to

EQ-TARGET;temp:intralink-;e010;326;578FDðτÞ ¼ k20n
2
XN
i¼1

hjΔri;DðτÞ · ðΩ̂i − Ω̂iþ1Þj2i: (10)

The ensemble average on the right side of Eq. (10) can be
calculated as

EQ-TARGET;temp:intralink-;e011;326;510

hjΔri;DðτÞðΩ̂i − Ω̂iþ1Þj2i ¼
4

3
πhjΩ̂i − Ω̂iþ1j2i

×
Z þ∞

0

PðjΔri;DjÞjΔri;Dj4djΔri;Dj

¼ 4ð1 − gÞDiτ; (11)

where g ¼ hΩ̂i · Ω̂iþ1i is a scattering anisotropy coefficient.
Equation (10) can be subsequently written as

EQ-TARGET;temp:intralink-;e012;326;406FDðτÞ ¼ k20n
24ð1 − gÞτ

XN
i¼1

Di; (12)

which is a generalized form of the well-known equation for the
autocorrelation phase term for multiple scattering in the case of
Brownian motion in a uniform medium

EQ-TARGET;temp:intralink-;e013;326;327FDB
ðτÞ ¼ k20n

24DBτs
ltr

; (13)

where DB is the diffusion coefficient for Brownian motion, s is
the path length of light, and ltr is the transport mean free path.
Note that the path length of light, s, divided by ltr is the average
number of “isotropic” photon random walk steps (Ntr), which is
related to the number of scattering events by Ntr ¼ ð1 − gÞN.

2.2 Velocity Term

The anisotropy factor g for light scattering from RBCs is quite
high (g > 0.9516). This implies that the phase increments along
the scattering path through the vessel are correlated, which
makes calculation of the velocity term expressed by Eq. (7)
more complex. We will start the calculation by assuming with-
out loss of generality that the vessel axis is parallel with the
Z-axis such that velocities vi can be expressed as vi ¼ viΩ̂z,
where Ω̂z is a unit vector along the Z-axis. We can thus
write Eq. (7) as
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EQ-TARGET;temp:intralink-;e014;63;752

FVðτÞ¼k20n
2τ2

XN
i¼1

v2i hðxi−xiþ1Þ2i

þk20n
2τ2

XN
i¼2

Xi−1
j¼1

vivjhðxi−xiþ1Þðxj−xjþ1Þi; (14)

where xi ¼ Ω̂z · Ω̂i. To calculate the ensemble averages in
the above equation, we will follow the procedure outlined in
Sakadžić and Wang.17 We assume that the probability of a ran-
dom walk pðl1; : : : ; lNÞ through the vessel can be expressed as

EQ-TARGET;temp:intralink-;e015;63;632pðl1; : : : ; lNþ1Þ ¼ fðNþ1Þðcos θ1; : : : ; cos θNþ1Þ
YNþ1

j¼1

pðljÞ;

(15)

where li ¼ liΩ̂i is the vector given by the free path between scat-
terers i − 1 and i (i.e., li ¼ ri − ri−1), pðliÞ ¼ μs expð−μsliÞ is
the probability density of the free path li, μs is the scattering
coefficient, and fðNþ1Þðcos θ1; : : : ; cos θNþ1Þ is the probability
density function that the scattering path follows a Markov
chain of scattering angles θ1; : : : ; θNþ1. fðNþ1ÞðÞ can be further
represented as
EQ-TARGET;temp:intralink-;e016;63;486

fðNþ1Þðcos θ1; : : : ; cos θNþ1Þ

¼ p̃sðcos θ1Þ
YN
j¼1

fð2Þðcos θj; cos θjþ1Þ; (16)

where p̃sðcos θ1Þ is the probability of the initial photon direc-
tion conveniently set to 0.5. fð2Þðcos θj; cos θjþ1Þ is thus given
as

EQ-TARGET;temp:intralink-;e017;63;382fð2Þðcosθj;cosθjþ1Þ¼
Xþ∞

m¼0

2mþ1

2
gmPmðcosθjÞPmðcosθjþ1Þ;

(17)

where gm is the m’th moment of the scattering phase function
and Pmðcos θÞ is a Legendre polynomial. We further assume
that scattering angles can be described by the Henyey–
Greenstein phase function (i.e., gm ¼ gm). By following the der-
ivations from Sakadžić and Wang,17 one can show that hx2i i ¼
1∕3 and hxixiþni ¼ gn∕3. Therefore, Eq. (14) can be expressed
as
EQ-TARGET;temp:intralink-;e018;63;249

FVðτÞ ¼ k20n
2τ2

2

3
ð1 − gÞ

XN
i¼1

v2i

− k20n
2τ2

2

3
ð1 − gÞ2

XN
i¼2

Xi−1
j¼1

vivjgi−j−1: (18)

2.3 Approximate Solution

If we make several assumptions that are consistent with realistic
soft biological tissue properties, we can significantly simplify the
expressions for FDðτÞ and FVðτÞ. We first assume that absorption
inside the vessel has a negligible influence on the radiance dis-
tribution, which is expected given that the absorption length in
blood is ∼2 to 4 mm at the optical wavelengths in the 780- to
850-nm range typically used in DCS measurements.16 Next,

we assume that both the measured tissue volume and the partial
volume of blood are large such that light propagation is diffusive,
that vessels are penetrated by photons from a sufficient number of
angles to reproduce the ensemble averaging in our calculations,
and that multiple scattering within larger vessels results in effec-
tive sampling of all radial locations. Under such conditions, pho-
tons have an equal probability of scattering from each location
inside the vessel, and the location-specific terms vi and Di
can be replaced by their average values, as we observed and doc-
umented in our previous MC-based study.14 If we know the vessel
radius R and the intravascular radial distributions of the RBC
velocity vðriÞ and diffusion coefficient DðriÞ, we may write

EQ-TARGET;temp:intralink-;e019;326;620FDðτÞ ¼ 4k20n
2ð1 − gÞNDavτ; (19)

EQ-TARGET;temp:intralink-;e020;326;589FVðτÞ ¼
2

3
k20n

2ð1 − gNÞv2avτ2; (20)

where

EQ-TARGET;temp:intralink-;e021;326;542Dav ¼
2

R2

Z
R

0

DðrÞrdr; (21)

and

EQ-TARGET;temp:intralink-;e022;326;498vav ¼
2

R2

Z
R

0

vðrÞrdr (22)

are the average values of Di and vi.
We can introduce another approximation when g is close to 1,

which is typically the case with scattering from the RBCs:
1 − gN ≈ ð1 − gÞN. For example, for ðg ¼ 0.95;N < 4Þ the rel-
ative error of this approximation is <5%. We can finally write

EQ-TARGET;temp:intralink-;e023;326;409FDðτÞ ¼ 4k20n
2sl−1tr Davτ; (23)

EQ-TARGET;temp:intralink-;e024;326;378FVðτÞ ¼
2

3
k20n

2sl−1tr v
2
avτ

2; (24)

where ð1 − gÞN ≈ s∕ltr and s is the photon path length through
the vessel.

3 Realistic Vascular Morphology
So far we have developed the expression for the autocorrelation
function g1ðτÞ for a path length s through a single vessel

EQ-TARGET;temp:intralink-;e025;326;274g1ðτÞ ¼ exp

�
−
1

2
FðτÞ

�
; (25)

where FðτÞ ¼ FDðτÞ þ FVðτÞ and terms FDðτÞ and FVðτÞ are
given by Eqs. (23) and (24), respectively.

In a realistic soft biological tissue, such as the brain cortex,
vessels of different diameters and average RBC velocities will
be present. We may first associate each vessel with the arterial,
venous, or capillary compartment. Each of these compartments
contains a population of vessels with different diameters and
average RBC velocities. For a path length s sufficiently long
through the tissue to probe all of these vessel types, we can write

EQ-TARGET;temp:intralink-;e026;326;130FðτÞ ¼ FartðτÞ þ FveinðτÞ þ FcapðτÞ þ FtissðτÞ; (26)

where FartðτÞ, FveinðτÞ, FcapðτÞ, and FtissðτÞ represent contribu-
tions from arterial, venous, capillary, and extravascular (i.e.,
tissue) compartments, respectively. They can be expressed as
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EQ-TARGET;temp:intralink-;e027;63;752

FartðτÞ ¼ k20n
2sl−1tr;vasc

Z
Rart;max

Rart;min

δartðRÞdR

×
�
4Dav½R; vart;avðRÞ�τ þ

2

3
v2art;avðRÞτ2

�
; (27)

EQ-TARGET;temp:intralink-;e028;63;688

FveinðτÞ ¼ k20n
2sl−1tr;vasc

Z
Rvein;max

Rvein;min

δveinðRÞdR

×
�
4Dav½R; vvein;avðRÞ�τ þ

2

3
v2vein;avðRÞτ2

�
; (28)

EQ-TARGET;temp:intralink-;e029;63;623

FcapðτÞ ¼ k20n
2sl−1tr;vascδcap

Z
vcap;max

vcap;min

pcapðvcapÞdvcap

×
�
4DavðvcapÞτ þ

2

3
v2capτ2

�
; (29)

and

EQ-TARGET;temp:intralink-;e030;63;558FtissðτÞ ¼ k20n
2sl−1tr;tissδtiss4DBτ; (30)

where ltr;tiss is the transport mean free path in tissue. We assumed
that hematocrit is constant and that the transport mean free path
ltr;vasc in the vasculature is the same in all vessels. δtiss and δcap
are volume fractions of the tissue and capillary compartments,
respectively. δartðRÞ and δveinðRÞ are the densities of the volume
fraction of arteries and veins with radius R, respectively. For
simplicity, we neglected the radial differences between capilla-
ries and considered only their velocity distribution pcapðvcapÞ.
We also neglected any potential velocity distributions in arteries
and veins with the same radius and assumed that the average
velocity in these vessels can be represented as a function of
the vessel radius [in general, vart;avðRÞ ≠ vvein;avðRÞ]. Finally,
only Brownian motion characterized by the diffusion constant
DB is considered in tissue.

Based on Eqs. (27)–(30), we need a detailed knowledge of
the vascular morphology, RBC rheology, and DB in tissue to
compute FartðτÞ, FveinðτÞ, FcapðτÞ, and FtissðτÞ. This information
is not readily accessible, but it may be available in the
near future due to the current progress in experimental
techniques.18 Another factor to consider is how much our
model of diffusive RBC motion departs from reality in vessels
with a small diameter (<10 μm), which include capillaries, pre-
capillary arterioles, and postcapillary venules. Further measure-
ments and numerical modelings of the microvascular blood flow
and morphology may inform modifications of Eqs. (27)–(30) to
better represent microvascular compartments.

In the following sections, we will show that some important
relations between the DCS measurements and blood flow can
already be deduced from Eqs. (27)–(30).

4 Correlation Transfer and Diffusion
Equations

We start with an integral form of the CTE for scatterers experi-
encing diffusive, linear, or oscillatory motion19–21

EQ-TARGET;temp:intralink-;e031;63;153

Iðr; Ω̂; τÞ ¼ I0ðr; Ω̂; τÞ þ
Z

r

r0

μsðrsÞe−μtðrsÞjrs−r0j

×
Z
4π
pðΩ̂; Ω̂ 0Þhe−iKrðrsÞðΩ̂−Ω̂ 0Þ·ΔrsðτÞi

× Iðrs; Ω̂ 0; τÞdjrs − r0jdΩ 0; (31)

where Iðr; Ω̂; τÞ is the time-varying-specific intensity at position

r and in direction given by the unity vector Ω̂. Iðr; Ω̂; τÞ repre-
sents an angular spectrum of the mutual coherence function, and
it should be noted that the temporal field correlation function

can be obtained as an integral of Iðr; Ω̂; τÞ over all solid angles

Ω. I0ðr; Ω̂; τÞ is the unscattered (coherent) time-varying-specific
intensity originating from the point r0 at the boundary. The inte-
gral on the right side of the equation represents contributions of

time-varying-specific intensities Iðrs; Ω̂ 0; τÞ from directions Ω̂ 0

scattered into direction Ω̂ along the path from r0 to r at locations
rs. pðΩ̂; Ω̂ 0Þ is a scattering phase function describing the prob-

ability of scattering from Ω̂ 0 into Ω̂ direction. We emphasize that
scattering coefficient μsðrÞ and extinction coefficient μtðrÞ are
functions of position r in the inhomogeneous scattering

medium. Finally, hexp½−iKrðrsÞðΩ̂ − Ω̂ 0Þ · ΔrsðτÞ�i is the
decorrelation contribution from the scatterer displacement
ΔrsðτÞ due to both diffusive and advective (linear) motion,
where hi stands for the ensemble average. Kr is given by

KrðrÞ ¼ k0nþ 2πRe½fðΩ̂; Ω̂Þ�ρsðrÞ∕ðk0nÞ, where the second
term on the right side accounts for the reduction of the propa-
gation speed of the mean field due to multiple wave scattering,

ρsðrÞ is the density of scatterers, fðΩ̂sc; Ω̂incÞ is the optical scat-
tering amplitude from direction Ω̂inc into direction Ω̂sc, and Re[]
stands for the real value.

The scatterer displacement term at location r can be
expressed as ΔrðτÞ ¼ ΔrDðτÞ þ vðrÞτ, where ΔrDðτÞ is due
to either RBC diffusive motion inside the vessel or Brownian
motion of scatterers outside the vessel. RBC velocity vðrÞ is
not zero only inside the vessel. To perform ensemble averaging,
we will apply the same approximation from Sec. 2

EQ-TARGET;temp:intralink-;e032;326;396hexp½−iKrðrsÞðΩ̂ − Ω̂ 0Þ · ΔrsðτÞ�i

¼ exp

�
−
1

2
Fðrs; Ω̂ − Ω̂ 0; τÞ

�
; (32)

where

EQ-TARGET;temp:intralink-;e033;326;321Fðrs; Ω̂ − Ω̂ 0; τÞ ¼ h½KrðrsÞðΩ̂ − Ω̂ 0Þ · ΔrsðτÞ�2i: (33)

Following the steps from Sec. 2 (phase accumulation in
a vessel), it is easy to show that

EQ-TARGET;temp:intralink-;e034;326;271

Fðrs; Ω̂ − Ω̂ 0; τÞ ¼ K2
r ðrsÞðΩ̂ − Ω̂ 0Þ22DðrsÞτ

þ K2
r ðrsÞ½ðΩ̂ − Ω̂ 0Þ · vðrsÞ�τ2: (34)

We can now follow the same procedure as in Sakadžić and
Wang21 to convert the integral form of CTE into a differential
CTE expression

EQ-TARGET;temp:intralink-;e035;326;185�
Ω̂

∂
∂r

þ μt

	
Iðr; Ω̂; τÞ

¼ μs

Z
4π
pðΩ̂; Ω̂ 0Þe−1

2Fðr;Ω̂−Ω̂ 0;τÞIðr; Ω̂ 0; τÞdΩ 0: (35)

We can also allow for the source Sðr; Ω̂Þ in the medium and
write

Journal of Biomedical Optics 027006-4 February 2017 • Vol. 22(2)
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EQ-TARGET;temp:intralink-;e036;63;752�
Ω̂

∂
∂r

þ μt

	
Iðr; Ω̂; τÞ

¼ μs

Z
4π
pðΩ̂; Ω̂ 0Þe−1

2
Fðr;Ω̂−Ω̂ 0;τÞIðr; Ω̂ 0; τÞdΩ 0 þ Sðr; Ω̂Þ:

(36)

In the next step, we will derive an expression for the diffusion
correlation equation based on this CTE. We first apply the
standard approximation

EQ-TARGET;temp:intralink-;e037;63;649Iðr; Ω̂; τÞ ¼ 1

4π
Φðr; τÞ þ 3

4π
Ω̂ · Jðr; τÞ; (37)

where Φðr; τÞ is the temporal field autocorrelation function.
We proceed by replacing Iðr; Ω̂; τÞ in Eq. (36) and perform-

ing the integral over Ω before and after multiplying Eq. (36)
with Ω̂. To perform the integrations, we apply the following
approximation:

EQ-TARGET;temp:intralink-;e038;63;553 exp

�
−
1

2
Fðr; Ω̂ − Ω̂ 0; τÞ

�
≈ 1 −

1

2
Fðr; Ω̂ − Ω̂ 0; τÞ: (38)

This procedure yields the well-known expression for the
CDE

EQ-TARGET;temp:intralink-;e039;63;486∇½Ds∇Φðr; τÞ� − ½μa þ μ 0
sψðr; τÞ�Φðr; τÞ þ S0ðrÞ ¼ 0;

(39)

where Ds ¼ ð3μsÞ−1, S0ðrÞ ¼ ∫ 4πSðr; Ω̂ÞdΩ, and μ 0
sψðr; τÞ

is due to the phase difference accumulated along the unit
pathlength

EQ-TARGET;temp:intralink-;e040;63;412μ 0
sψðr; τÞ ¼ μ 0

sK2
r 2Davτ þ μ 0

sK2
r

1

3
v2avτ2: (40)

The average values of the scatterer’s diffusion coefficientDav and
RBC velocity vav should take into account heterogeneity of the
scattering medium on the scale ∼ltr, so μ 0

sψðr; τÞ should in gen-
eral be calculated as s−1½FartðτÞ þ FveinðτÞ þ FcapðτÞ þ FtissðτÞ�,
where FartðτÞ, FveinðτÞ, FcapðτÞ, and FtissðτÞ are given by
Eqs. (27)–(30).

5 Reflection Geometry
For a scattering medium with the known probability PðsÞ of a
photon path length s between source and detector, we can
express the autocorrelation function as

EQ-TARGET;temp:intralink-;e041;63;251G1ðτÞ ¼
Z

PðsÞ exp
�
−
1

2
FðτÞ

�
ds; (41)

where the integral is taken over all possible path lengths s.
In DCS, measurements are typically performed in a reflec-

tion geometry. For a semi-infinite medium with source–detector
separation ρ, diffusion theory provides the analytical expression
for the path length probability PðsÞ. If we assume that FðτÞ is
linearly proportional to s, such as the case in Eqs. (26)–(30),
G1ðτÞ can then be expressed as

EQ-TARGET;temp:intralink-;e042;63;129G1ðρ; τÞ ¼ G1;0

�
expð−Kr1Þ

r1
−
expð−Kr2Þ

r2

�
; (42)

where

EQ-TARGET;temp:intralink-;e043;326;752K2 ¼ 3μaμ
0
s þ

2

3
μ 0
sF�ðτÞ; (43)

F�ðτÞ ¼ FðτÞ∕s, r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z20

p
, r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz0 þ 2zbÞ2

p
,

z0 ¼ ðμa þ μ 0
sÞ−1, zb ¼ γ∕μ 0

s , γ ¼ 1.76, and G1;0 is scaling
constant such that G1ðρ; τÞ → 1 when τ → 0.

5.1 Relative Importance of Diffusive and Advective
Red Blood Cell Motions

We now explore the relative importance of the FDðτÞ and FVðτÞ
terms. We consider a semi-infinite scattering medium and a DCS
measurement in a reflection geometry. For simplicity, we
assume μa ¼ 0, DB ¼ 0, and only one vessel type is present
in the medium. We further assume that the RBC velocity follows
a parabolic radial profile inside the vessel

EQ-TARGET;temp:intralink-;e044;326;581vðrÞ ¼ Vmax

�
1 −

rm

Rm

	
; (44)

where m ¼ 2 and Vmax is the velocity at the vessel center. From
Goldsmith and Marlow,22 the RBC diffusion coefficient is
given by DðrÞ ¼ αssj∂vðrÞ∕∂rj, where αss (typically around
10−6 mm2) is the shear-induced diffusion coefficient propor-
tionality constant. This allows us to write

EQ-TARGET;temp:intralink-;e045;326;482vav ¼ Vmax

m
mþ 2

; (45)

EQ-TARGET;temp:intralink-;e046;326;441DðrÞ ¼ αssm
rm−1

Rm Vmax; (46)

EQ-TARGET;temp:intralink-;e047;326;403Dav ¼
2m

mþ 1
αss

Vmax

R
; (47)

EQ-TARGET;temp:intralink-;e048;326;365F�ðτÞ ¼ k20n
2l−1tr δves

�
4Davτ þ

2

3
v2avτ2

	
; (48)

where we assumed that ltr ¼ 1 mm in both the vasculature and
the tissue.

Good agreement between Eq. (42) and MC simulations for a
similar geometry was already demonstrated by Boas et al.14 It
was shown that for a range of R and Vmax at ρ ¼ 20 mm both the
advective and, respectively, the diffusive RBC motion contribu-
tions to G1ðτÞ can be fit successfully with Eq. (48), providing
support for the derivations of the velocity terms in Sec. 2.2. It
was also shown that under the same conditions, diffusive RBC
motion almost exclusively determines the profile of G1ðτÞ.
While the summation of diffusive and advective motion
terms in Eq. (48) has been considered before,23 we provided
a theoretical support for this assumption that does not assume
that uncorrelated optical phase increments accumulated along
the path.

Here, we further compare individual contributions of the diffu-
sive and convective RBC motions to the decay of G1ðτÞ. Figure 1
shows G1ðτÞ due to FDðτÞ, FVðτÞ, and FDðτÞ þ FVðτÞ for
Vmax ¼ 2 mm∕s, a vascular volume fraction δves ¼ 2%, and a
range of vessel radii and source–detector separations. In all
cases, term FDðτÞ strongly dominates the expression for G1ðτÞ,
in agreement with prior experimental observations11,12 and our
prior MC simulations.14 While increasing the vessel radius and
decreasing the source–detector separation both lead to the
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increased importance of the advective RBC motion, even for the
short source–detector separation (ρ ¼ 5 mm) and large vessel
radius (R ¼ 40 μm), G1ðτÞ is still largely determined by the dif-
fusive RBC motion. Extrapolation of the results for the smallest
source–detector separation in Fig. 1 suggests that advective
RBCmotion may potentially dominate the laser speckle flowmetry
signal, especially for larger vessels, such as the ones considered by
Kazmi et al.24

6 Conclusion
We have presented a set of theoretical derivations for DCS mea-
surements that take into account both diffusive and correlated
advective scatterer motion and obtained results in agreement
with our previous MC simulation study. We also provide expres-
sions for considering realistic vascular morphologies and flow
profiles and for linking DCS measured motion parameters with
actual blood flow. Finally, we provide expressions for the cor-
relation transfer equation and correlation diffusion equation in
this context. These general equations may be used to model
DCS measurements in the more complex, realistic configura-
tions of tissue, optical sources, and detectors, as well as the

realistic distributions of both morphological parameters and
blood flow in vascular segments.
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