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Abstract. Fluorescence molecular tomography (FMT) has been widely used in preclinical tumor imaging, which
enables three-dimensional imaging of the distribution of fluorescent probes in small animal bodies via image
reconstruction method. However, the reconstruction results are usually unsatisfactory in the term of robustness
and efficiency because of the ill-posed and ill-conditioned of FMT problem. In this study, an FMT reconstruction
method based on primal accelerated proximal gradient (PAPG) descent and L1-norm regularized projection
(L1RP) is proposed. The proposed method utilizes the current and previous iterations to obtain a search
point at each iteration. To achieve fast convergence, the PAPG method is applied to efficiently solve the search
point, and then L1RP is performed to obtain the robust and accurate reconstruction. To verify the performance of
the proposed method, simulation experiments are conducted. The comparative results revealed that it held
advantages of robustness, accuracy, and efficiency in FMT reconstructions. Furthermore, a phantom experiment
and an in vivomouse experiment were also performed, which proved the potential and feasibility of the proposed
method for practical applications. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.8.085002]
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1 Introduction
Fluorescence molecular tomography (FMT) is an emerging
imaging modality that enables three-dimensionally (3-D)
quantitative observation of imaging targets and pathways at
the molecular and cellular level.1–6 FMT has been widely used
in the preclinical research of oncology, which can noninvasively
show the dynamic interactions of fluorescent targets. Because of
its quantification characteristics, FMT has been considered as
an important tool for tumor diagnostic imaging and basic
researches.7–10

The process of FMT usually includes the forward problem
and the inverse problem. The FMT reconstruction is a typical
inverse problem based on the system matrix and measurement
data sets that obtained by the forward problem. However, it is
very challenging to solve the FMT inverse problem efficiently
and precisely.11 FMT reconstruction is an ill-posed problem
due to the multiple scatterings of photons when propagating
through heterogeneous biological tissues. Besides, since only
the photon distribution on the surface is measurable, the FMT
reconstruction is always ill-conditioned.12–15 Furthermore, since
FMT reconstruction is sensitive to noise, it is difficult to obtain
satisfactory results under the influence of the system noise, such
as autofluorescence and the shot noise of the charge-coupled

device (CCD) camera.16 Therefore, how to precisely and effi-
ciently solve the inverse problem is important for FMT study.

Over past decades, great efforts were made to develop vari-
ous reconstruction methods. The regularization methods are
widely used in the inverse problem to mitigate the ill-posedness.
Among them, the L2-norm regularization is commonly used,
and the primary benefit of using L2-norm regularization is
the simplicity of the optimization problem involved, which
can be efficiently solved by standard minimization tools,
such as Newton’s method and conjugate gradient method
(CG_L2).17–20 However, the performance of L2-norm is usually
getting worse while existing high noise, and the reconstruction
of L2-norm is likely to be oversmoothed. To overcome the
oversmoothness of L2-norm regularization method, a priori
information, which is sparsity, is adopted in FMT. For FMT,
the size of early-stage tumors is small and sparse compared
with the whole body of the imaging object, so the L1-norm regu-
larization was employed to reconstruct the fluorescent source.
According to the compressed sensing theory,21 many solution
schemes combined with L1-norm optimization algorithm have
been exploited to solve this problem, such as the iterated shrink-
age method (IS_L1), L1-norm regularization piecewise constant
level set approach (L1-PCLS), variable splitting and alternating
direction (VSAD) scheme, nonconvex regularization method,
and the stagewise orthogonal matching pursuit-based method
(StOMP).22–26 These methods have been proved superior in
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overcoming the oversmoothing limitation of the L2-norm
regularization.27–29 However, measurement noises are unavoid-
able in FMTexperiments. The methods mentioned above are not
robust enough in presence of measurement noise.

In this study, we present a robust and efficient reconstruction
method based on the L1-norm primal accelerated proximal gra-
dient (L1-PAPG) for FMT reconstruction. The PAPG method
has been proposed in multitask learning in previous studies.30

Here, we adopted it to accelerate the computational process
during the iterative process. At each iteration, the value of
the next iteration always relied on a search point that combined
its previous and current iterations. This strategy was designed to
mitigate the noise jamming and obtain more precise and robust
results. Besides, in order to utilize the sparsity of fluorescent
sources, the L1-norm regularized projection (L1RP) was
employed to achieve L1-norm constraint. In this process, we
introduced the Lipschitz constant to initialize the step size.31

To validate the performance of the L1-PAPG method for
FMT reconstruction, simulation experiments were conducted.
We compare the proposed method with two recent reported
reconstruction methods, the VSAD method based on L1-norm
and the l2;1-norm optimization (L2;1-norm) method based on
structured sparsity. The results showed that L1-PAPG achieved
more robust and accurate reconstructions than VSAD and
obtained similar results with L2;1-norm method with faster
speed. Moreover, the mouse phantom experiment and the
in vivo small mouse experiment also proved that the proposed
method had great potential for its application in tumor mouse
model imaging.

The contents of this manuscript are as follows. In Sec. 2, we
present the photon propagation model and provide the proposed
method of FMT reconstruction. In Sec. 3, the simulation experi-
ments, mouse phantom experiments, and the in vivo experiments
were conducted to verify the peformance of the L1-PAPG
method. Finally, we summarize the paper and make a conclusion
in Sec. 4.

2 Method

2.1 Model of Photon Propagation

For the steady-state FMTwith point excitation light sources, the
photon propagation can be formulized by coupled diffusion
equation.32,33 To solve the coupled equation, the Robin-type
boundary conditions are introduced.34 Then, based on the
finite-element theory, the FMT problem can be linearized and
obtain the following matrix-form equations:

EQ-TARGET;temp:intralink-;e001;63;243b ¼ AX; (1)

where the measurement dataset of FMT is marked with the
symbol b, and the weight matrix FMT system is marked with
alphabet A. The intensity matrix of the fluorescence distribu-
tion in biological tissues is marked with the alphabet X.22

The inverse problem of FMT is to solve the intensity matrix
X in the linear math Eq. (1). More detailed description can be
found in Ref. 15.

2.2 Method Based on Primal Accelerated Gradient
Descent and L1-Norm Regularized Projection
(L1-PAPG) for Reconstruction

Because of the sparsity of the fluorescent sources, the L1-norm
regularization is employed in FMT problem to get the sparsity of

the solution.35–37 Hence, Eq. (1) can be transformed into the
following optimization function:

EQ-TARGET;temp:intralink-;e002;326;730min
x

EðxÞ ¼ 1

2
kAX − bk22 þ λkXk1 subject to x ≥ 0; (2)

where gðxÞ ¼ kXk1 is the L1-norm of matrix X, where fðxÞ ¼
1
2
kAX − bk22 denotes the objective function, the regularization

constraint parameter λ is used to balance fðxÞ and gðxÞ.
The conventional L1-norm regularization method cannot

handle the high-noise condition.14,29 The results usually are
imprecise and have a lot of artifacts. In this work, we proposed
a robust and efficient method based on PAPG and L1RP,30,31

which can effectively find the optimal solution.
The PAPG method based on two matrices s and x, where s is

the search point and x is the approximate solution. The search
point s can be obtained as follows:

EQ-TARGET;temp:intralink-;e003;326;568si ¼ xi þ αiðxi − xi−1Þ; (3)

where αi is the combination coefficient associated with
variable t:

EQ-TARGET;temp:intralink-;e004;326;515αi ¼
ti−1
ti−2

− ti−1; (4)

to accelerate the convergence, ti should decrease and tend to
zero as fast as possible. ti is calculated as follows:

EQ-TARGET;temp:intralink-;e005;326;451ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4i−1 þ 4t2i−1

p
− t2i−1

2
: (5)

We first calculated the antigradient of s to get v:

EQ-TARGET;temp:intralink-;e006;326;396vi ¼ si −
1

γi
∇fðsiÞ; (6)

where 1
γi
is the step size, and the Armijo-Goldstein rule is used to

linearly search γi. To make more stable, we utilize the Lipschitz
condition to get the initial value of γi. In this case, both fðxÞ and
gðxÞ are convex functions, and the function fðxÞ satisfies the
Lipschitz condition:

EQ-TARGET;temp:intralink-;e007;326;297k∇fðxÞ − ∇fðx 0Þk ≤ Lkx − x 0k ∀ x; x 0 ∈ X; (7)

where L is the Lipschitz constant: L ¼ λmaxðATAÞ, λmax means
the maximal eigenvalue of ATA, we initialize γi with the
Lipschitz constant.30

The approximate solution xiþ1 is computed as the L1RP,
which is obtained by the Euclidean projection of v onto convex
set G:31

EQ-TARGET;temp:intralink-;e008;326;200xiþ1 ¼ min
x∈G

1

2
kxi − vik2: (8)

We consider that the x reaches the optimal approximate
solution if the following equation holds:

EQ-TARGET;temp:intralink-;e009;326;136kdk22 ≤ λ or kAdk22 ≤ γkdk22; (9)

where d ¼ xiþ1 − si is the difference between the new approxi-
mate solution x and the search point s. The illustration of the
proposed method is shown in Fig. 1. The L1-PAPG method
mainly contains two steps, first, utilizing the PAPG method

Journal of Biomedical Optics 085002-2 August 2018 • Vol. 23(8)

Liu et al.: Reconstruction method for fluorescence molecular tomography based on L1-norm primal. . .



to find the search point, and then using L1RP method to obtain
the approximate solution.

In FMT, the reconstruction results are sensitive to the regu-
larization parameter. Thus, the selection of the regularization
parameter is important for FMT problem. In this work, to obtain
the optimal solution and make the results more reliable, the
L-curve criterion was adopted to determine the regularization
parameters of all methods. The L-curve criterion is based on
a log–log plot of corresponding values of residual and solution
norms, which is (log kAx − bk2, log kxk1). The optimal regulari-
zation parameter is determined by the point with maximum
curvature of the L-shaped region.38 The L-curve method was
widely used in adaptive parameter selection of FMT study and
was proofed that it is an effective and reliable method for
FMT problem.39,40 In this study, all the methods with L-curve
parameters were implemented by using MATLAB regulariza-
tion toolbox.41

The flowchart of the main steps of L1-PAPG method is given
in Algorithm 1.

3 Results
In this section, we conducted the heterogeneous simulation
experiments, mouse phantom experiments, and in vivo small
mouse experiments for evaluating the performance of the L1-
PAPG method. All reconstruction programs were conducted by
MATLAB and ran on a desktop computer with 16 GB RAM and
3.40 GHz Intel Core i7-6700 CPU.

For quantitative analysis, the signal-to-background ration
(SBR) and the position error (PE) are introduced in the paper.
SBR is adopted to demonstrate the contrast of the reconstruction
source and background, which is defined as follows:

EQ-TARGET;temp:intralink-;e010;63;246SBR ¼ μROI − μROBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωROIσ

2
ROI þ ωROBσ

2
ROB

p ; (10)

where μ is the mean value, σ is the standard deviation, and ω is
the weight coefficient. The subscripts ROI and ROB mean the
region of interest (ROI) and region of background (ROB),
respectively.

PE aims to calculate the barycenter deviation between the
real fluorescent region and the reconstruction region, which is
given by

EQ-TARGET;temp:intralink-;e011;63;125PE¼kPr−P0k2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PrðxÞ−P0ðxÞ�2þ½PrðyÞ−P0ðyÞ�2þ½PrðzÞ−P0ðzÞ�2

q
;

(11)

where Pr is the geometric central position of the reconstruction
fluorescent source and P0 is the actual position of the fluores-
cent source, and ðx; y; zÞ is the 3-D coordinate of the centroid.

3.1 Heterogeneous Simulation Model Experiment

A heterogeneous simulation model was designed to evaluate the
performance of the L1-PAPG method. The simulation model is
2 cm in height and 2 cm in diameter, as shown in Fig. 2. The
simulated lungs, heart, bone, and muscle were represented by
four kinds of simulated materials, whose optical parameters
are presented in Table 1. The corresponding excitation and
emission light wavelength are 780 and 830 nm, respectively.42

In Fig. 2(b), the red dots marked different positions of the
excitation light source. And two globular fluorescent sources,
S1 and S2, were placed in the right lung. The fluorescent
yield of each source was 0.02 mm−1. Both sources were
2 mm in diameter, and the center of the source was situated
in z ¼ 0 plane. We measured the emitted fluorescent within
a 160-deg field of view (FOV) at the opposite side of each

Fig. 1 The illustration of the L1-PAPG method.

Algorithm 1 The L1-PAPG method.

Input: f ðxÞ, ∇f ðxÞ, x0, γ1, λ, A

Output: x

1. Initialize x1 ¼ x0 ¼ 0, t−1 ¼ t0 ¼ 1, γ1 ¼ L

2. for i ¼ 1 to n do

3. set αi ¼ t i−1
t i−2

− t i−1,

4. si ¼ x i þ αi ðx i − xi−1Þ

5. compute g ¼ ∇f ðsi Þ

6. While(1)

7. Compute v i ¼ si − g∕γi

8. x iþ1 ¼ minx∈G 1
2 kxi − v ik2

9. d ¼ x iþ1 − si

10. if kdk22 ≤ λ

11. break;

12. end if

13. if kAdk22 ≤ γikdk22
14. break;

15. else

16. γiþ1 ¼ max
�
2 � γi ; kAdk

2
2

kdk22

�
;

17. end if

18. end while

19. Set t i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4i−1þ4t2i−1

p
−t2i−1

2

20. end for

21. Output x ¼ x iþ1
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Fig. 2 The two-source heterogeneous simulation model. (a) The 3-D view of the model. (b) The cross-
section in the z ¼ 0 plane. The red dots in panel (b) denote the excitation point sources. Fluorescence
was collected from the opposite cylindrical surface within 160-deg FoV for each point source.

Table 1 Optical parameters of the heterogeneous model.

Material μax m−1) μ 0
sx (m−1) μam. (m−1) μ 0

sm (m−1)

Muscle 38.9 279.4 29.6 234.5

Lungs 84.2 2005.6 61.7 1940.6

Heart 27.6 775.5 22.0 709.6

Bone 26.7 1995.5 20.1 1821.3

Fig. 3 Reconstruction results from the (a) VSADmethod, (b) the L2;1-norm method, and (c) the L1-PAPG
method. The first row illustrates the 3-D views of the reconstruction results and the second row illustrates
the slice images in the z ¼ 0 plane. The red circles in the slice images represent the real locations of
the fluorescent sources.

Table 2 Quantitative analysis of different methods.

Method VSAD L2;1-norm L1-PAPG

PE (mm) S1:0.24 S1:0.18 S1:0.18

S2:0.44 S2:0.27 S2:0.30

SBR 22.1 76.86 67.37

Time (s) 14.33 7.12 6.64
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excitation light source through the simulation model. In the
process of reconstruction, this heterogeneous simulation model
with two sources was discretized into 5623 nodes and 33,490
tetrahedral elements.

To further verify the performance of L1-PAPG method, two
other reconstruction methods, the VSAD and L2;1-norm method,
were implemented to compare with the proposed method.
The VSAD method used variable splitting strategy as well as

Fig. 4 Reconstructed results with different noise intensities for three methods. The columns denote differ-
ent noise intensities (10%, 15%, 20%, and 25%) corresponding to different reconstructed results with three
methods. _3D denotes the 3-D views of the reconstructed results, and _CV denotes the cross-sectional
views. The first and second rows are the reconstructed results obtained by the VSAD. The third and fourth
rows correspond to the L2;1-norm method. The last two rows correspond to the L1-PAPG method. The red
circles in the cross-sectional views show the real positions of the fluorescent sources.
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alternating direction strategy for FMT reconstruction, which
was accurate and efficient for FMT imaging.25 The L2;1-norm
method utilized the group sparsity of the fluorescent source
and adopted Nesterov’s method to accelerate the computation,
which can enhance robustness to noise.14 To make the results
stable and convincing, the regularization parameters of all the
methods were obtained by L-curve method, and the iterative
number was set to 400 for all methods to ensure the conver-
gence. The reconstruction results of three methods are shown
in Fig. 3, and the quantitative analysis is shown in Table 2.
Compared with the VSAD method, the L1-PAPG method can
achieve a much smaller PE value and higher SBR. However,
since the L2;1-norm included additional information, which
was structured sparsity, the accuracy of the proposed method
was not as good as L2;1-norm, but the PE gap between the
two methods was small. Besides, since the proposed method
only utilizes the sparsity information, the computational com-
plex is less than L2;1-norm method. Thus, its reconstruction
speed is faster. The phantom and in vivo experiment in next
section also verified the conclusion.

As mentioned in Sec. 1, the noise in FMT is unavoidable.
Thus, the robustness of reconstruction method is important
for FMT reconstruction. In this experiment, we tested the
robustness of the proposed method with noise corrupted
data. The measurement datasets were artificially interfered by
10%, 15%, 20%, and 25% Gaussian noise, respectively. The
reconstruction images of three methods under different noise
intensities are demonstrated in Fig. 4. The quantitative analysis
of the reconstruction results is summarized in Table 3. It is clear
that when the noise intensity increased, the L1-PAPG method
and L2;1-norm method offered more robust reconstruction of
two fluorescent sources compared with the VSAD methods.
Even if the measurement dataset was artificially interfered

by 25% Gaussian noise, the proposed method still achieved
satisfactory results. Table 3 also demonstrates that, for the
same noise intensity, the L1-PAPG method offered the similar
performance with L2;1-norm, and with the noise intensity
increased, the L1-PAPG method was robust and less effected
by the noise. It is further proved that the L1-PAPG method
can obtain the better results than traditional methods and can
obtain similar results with L2;1-norm with faster reconstruction
speed.

3.2 Mouse Phantom Experiments

In this experiment, a dual-modality imaging system equipped
with micro-CT and FMT, which was established by our team,
was used for data acquisition,43–45 as shown in Fig. 5. The
system mainly consisted of a rotating stage, a micro-CT with
x-ray generator (UltraBright, Oxford Instruments, USA) and
x-ray detector (CMOS Flat-panel Detector, Hamamatsu,
Japan), an ultrasensitive cooled CCD camera (PIXIS 1024BR,
Princeton Instruments, USA), and a continuous wave laser
(the center wavelength is 671 nm).

To further verify the feasibility and performance of the
L1-PAPG method, the mouse phantom experiment (XFM-2
Fluorescent Phantom, PerkinElmer, USA) was implemented,
as shown in Fig. 6. The phantom includes the main body
and two fluorescent tubes. On the top of tube 1 is fluorescent
sources, the corresponding peak excitation wavelength and
emission wavelength is 671 and 710 nm, respectively, which
is the same with cy5.5 probe. Tube 2 is blank, which is same
with the main body, as shown in Fig. 6(a). The red box in
Fig. 6(a) represents the ROI of reconstruction.

The main process of the mouse phantom experiments as fol-
lows. First, the optical data were acquired at a detector FOV of
160 deg and four projections with different angles were adopted,
and each angle was acquired once. Then, the phantom was
scanned with micro-CT, as shown in Fig. 6(c). The red circle
in Fig. 6(c) was the location of the fluorescent source
(21.00 mm, 23.00 mm, and 18.00 mm). Next, to describe the
photon distribution on the surface of the phantom, the fusion of
the mesh and the fluorescence data were carried out via
a 3-D surface flux reconstruction algorithm,46 as shown in
Fig. 6(b). Finally, the mouse phantom was discretized into
a volumetric mesh with 5693 nodes and 34,017 tetrahedral
elements.

Table 3 Quantitative analysis of the three methods with different
noise intensities.

Method Noise intensities

PE (mm)

SBR Time (s)S1 S2

VSAD 10% 0.34 0.48 21.75 14.35

L2;1-norm 0.22 0.31 67.76 7.33

L1-PAPG 0.27 0.35 60.97 6.65

VSAD 15% 0.47 0.56 19.72 14.37

L2;1-norm 0.27 0.38 55.21 7.41

L1-PAPG 0.32 0.42 53.6 6.85

VSAD 20% 0.53 0.56 16.27 14.42

L2;1-norm 0.44 0.45 44.15 7.31

L1-PAPG 0.44 0.47 43.75 6.67

VSAD 25% 0.58 0.90 16.20 14.39

L2;1-norm 0.47 0.55 35.51 7.24

L1-PAPG 0.45 0.57 34.97 6.54 Fig. 5 The schematic illustration of the dual-modality micro-CT and
FMT imaging system.
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After the above process, the L1-PAPG method was also com-
pared with the VSAD and L2;1-norm method. Similarly, the
parameters of the three methods were chosen by L-curve method.
The reconstruction results of the three methods were shown in
Fig. 7, and the quantitative analysis of the reconstruction results
can be found in Table 4. From the results, the L1-PAPG could
also obtain the better results in PEs and SBRs than VSAD, and
obtain the similar results with L2;1-norm with faster speed, which
further demonstrate the advantage of the proposed method.

Fig. 6 (a) The illustration of mouse phantom. (b) Illustration of photon distribution on the surface.
(c) The CT slice of z ¼ 18 mm of the mouse phantom, the red circle in panel (c) represents the
fluorescent source The illustration of the dual-modality micro-CT and FMT imaging system.

Fig. 7 The reconstruction results of the three methods. (a) The results of VSAD method, (b) results of
the L2;1-norm method, and (c) the results of L1-PAPG method. The red circle represents the location of
the source.

Table 4 Quantitative analysis of the mouse phantom experiment.

VSAD L2;1-norm L1-PAPG

PE (mm) 0.76 0.56 0.58

SBR 40.81 79.68 70.44

Time (s) 15.90 7.43 6.02
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3.3 In-Vivo Small Mouse Experiments

To validate the potential of the practical application of the
L1-PAPG method, an in vivo small mouse experiment was
implemented. In this experiment, a fluorescent bead (3 mm
in diameter) containing cy5.5 solution was implanted into the
hypogastria of the mouse. The extinction coefficient of the
cy5.5 solution is 0.019 mm−1 μM−1, and the quantum efficiency
is 0.23. The corresponding peak excitation wavelength and
emission wavelength is 671 and 710 nm, respectively.47 The
data acquisition and procedure are as same as those in mouse
phantom experiment. The Feldkamp–Davis–Kress method was
utilized to structure the mouse stereoscopic data after scan-
ning,48 as shown in Fig. 8(a). The major organs (heart, kidneys,
muscle, lungs, and liver) of the mouse were segmented and
marked with different colors, and the optical property parame-
ters of these organs were listed in Table 5.49 And the photon
distribution on the surface was shown in Fig. 8(b).

The micro-CT images were shown in Fig. 9. The green
square marks the position of the fluorescent bead at the coordi-
nates (43.00 mm, 47.00 mm, and 6.40 mm). For the reconstruc-
tion of FMT, the in vivo mouse model was discretized into

a volumetric mesh with 5302 nodes and 29,414 tetrahedral
elements.

In the same way, we adopted the VSAD and L2;1-norm
method to compare with the L1-PAPG method. The parameters
were also determined by L-curve method. The results recon-
structed by VSAD method, L2;1-norm method, and the L1-
PAPG method were presented in Fig. 10. Their quantitative
comparisons were shown in Table 6. The cross-sections in
the z ¼ 6.4 mm plane and the corresponding CT image were
also shown in the second row and third row of Fig. 10. The
reconstruction results revealed that both L1-PAPG and L2;1-
norm were able to obtain a satisfactory result with the bias
of 0.56 and 0.55 mm, whereas the result of VSAD method
located a large bias of the fluorescent bead with 0.84 mm.
However, the reconstruction time of the L1-PAPG method
was 6.84 s, which was faster than L2;1-norm method (7.33 s).
This in vivo experiment demonstrates that the L1-PAPG
method is efficient and fast for FMT reconstruction. The results
implied that the proposed method has potential to practical
application.

4 Conclusion and Discussion
In this study, L1-PAPG method based on primal accelerated
gradient descent and L1RP projection for FMT problem has
been proposed. As we all know, FMT is an ill-posed and ill-
conditioned problem. To improve the reconstruction results,
many regularized models are utilized to solve the problem,
such as the interior-point method, the CG_L2 method, the
IS_L1 method, L1-PCLS method, and StOMP. However, the
robust of these methods need to be further improved. In this
paper, the L1-PAPG was proposed to reconstruct fluorescent
sources in the biological tissue. To assess the performance,
simulation experiments, mouse phantom experiments, and
in vivo small mouse experiments were designed. The results
showed that the accuracy of the proposed method was better
than VSAD but not as good as L2;1-norm. However, the PE
gap between the L1-PAPG and L2;1-norm method was small,
and the proposed method has its own advantages. First, it
does not need the prior information of structure sparsity but
purely based on the sparsity. Thus, the proposed method is likely
to be more universal and feasible for applying FMT in different
scenarios. For example, it is more suitable for small tumor
reconstruction, because small tumors have strong characteristic
of sparsity. Second, since the proposed method only utilizes the
sparsity information, the computational complex is less than the
L2;1-norm method. Thus, its reconstruction speed is faster. This
was proved by the experiments in our manuscript. Therefore, the
L2;1-norm method is more suitable for the cases that require

Table 5 Optical properties of the mouse organs and tissues.

Material
Muscle
(m−1)

Lungs
(m−1)

Heart
(m−1)

Liver
(m−1)

Kidneys
(m−1)

μax 84.5 191.82 57.4 343.7 64.4

μ 0
sx 427.3 2172.0 962.0 677.0 2248.0

μam 56.3 126.6 383.0 228.3 43.0

μ 0
sm 379.2 2124.0 905.0 648.0 2109.0

Fig. 8 (a) The heterogeneous mouse model for in vivo experiment
and (b) photon distribution on the surface.

Fig. 9 Micro-CT images of the small mouse. (a) Transverse view, (b) sagittal view, and (c) coronal view.
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higher precision, and the structural prior information is easy
to obtain. The proposed method is more suitable for the
cases that require higher speed, and structural prior is difficult
to obtain. The experiment results also demonstrated that the
L1-PAPG method was robust to noise and had great potential
on the practical application of FMT.

In conclusion, the L1-PAPG method is a robust and efficient
reconstruction strategy for FMT. Although the L1-PAPG
can achieve promising results in FMT, there are still some
challenging problems for FMT reconstruction, such as the
morphological reconstruction of the tumor, which has a great
effect on treatment in the field of oncology. The future work may
focus on the tumor boundary determination and morphological
reconstruction of the tumor.
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