
N
t
l

F
N
C
C
B
U

G
B
G
G
U
E

1
1
O
i
b
t
d
m
c
fi
d
d
g
a

1

P
a
b
a
m
s
o
r

Journal of Biomedical Optics 13�3�, 034002 �May/June 2008�

J

ear real-time classification of optical coherence
omography data using principal components fed
inear discriminant analysis

lorian Bazant-Hegemark
icholas Stone
ranfield University at Silsoe
ranfield Health
edfordshire MK45 4DT
nited Kingdom

and
loucestershire Royal Hospital
iophotonics Research Group
reat Western Road
loucester GL1 3NN
nited Kingdom
-mail: n.stone@medical-research-centre.com

Abstract. An optical coherence tomography �OCT� prediction algo-
rithm is designed and tested on a data set of sample images �taken
from vegetables and porcine tissues� to demonstrate proof of concept.
Preprocessing and classification of data are fully automated, at a rate
of 60,000 A-scans/min on a standard computer and can be consid-
ered to deliver in near real-time. A data set consisting of nine groups
was classified correctly in 82% of cases after cross-validation. Sets of
fewer groups reach higher rates. The algorithm is able to distinguish
groups with strong visual similarity among several groups of varying
resemblance. Surface recognition and normalizing to the surface are
essential for this approach. The mean divided by the standard devia-
tion is a suitable descriptor for reducing a set of surface normalized
A-scans. The method enables grouping of separate A-scans and is
therefore straightforward to apply on 3-D data. OCT data can reliably
be classified using principal component analysis combined with lin-
ear discriminant analysis. It remains to be shown whether this algo-
rithm fails in the clinical setting, where interpatient variation can be
greater than the deviations that are investigated as a disease marker.
© 2008 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2931079�
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Introduction
.1 Optical Coherence Tomography
ptical coherence tomography �OCT� is a relatively novel

maging modality first described by Huang et al.,1 which is
ecoming established as a technique for noninvasive, real-
ime subsurface imaging at resolutions of 2 to 10 �m. Non-
estructive probing of this type is of interest specifically in
edical imaging2,3 and also in other fields such as art

onservation,4,5 quality assurance, or homeland security �e.g.,
nger prints�. Compared with other emerging imaging mo-
alities, OCT provides high resolution and imaging speed for
etailed structural information—in vast data sets. We investi-
ate automated classification, which is quicker than visually
ssessing images and likely to be more reproducible.

.1.1 Principal component analysis and linear
discriminant analysis

rincipal component analysis �PCA� and linear discriminant
nalysis �LDA� are mathematical methods that, on a statistical
asis, enable data reduction and clustering into groups.6 There
re papers on applying PCA for OCT related analysis. Weiss-
an et al.7 used PCA for comparing the agreement of their

urface recognition algorithm with the line drawn by human
perators. Qi et al.8 used PCA for preprocessing. They were
educing six statistical measures for texture features to two
ournal of Biomedical Optics 034002-
principal components. However, using this approach they re-
ported no benefit over using the 6-D data.

Huang and Chen9 also applied PCA and LDA for classifi-
cation, but not on the OCT image itself. Rather, they were
using a set of 25 morphological parameters to characterize
ophthalmologic pathologies. These parameters were thickness
and size measures that could be extracted from the OCT im-
age. In nonophthalmic OCT imaging, such defined layers are
usually not observed.

Zysk and Boppart10 reported three methods for classifying
three relevant groups �adipose, cancerous, stroma� in A-scans
of breast cancer biopsies. The first was taking the Fourier
transform �FT� of an A-scan and using its difference from a
reference �the mean of a training set� for the analysis. The
second was periodicity analysis, which looks at the distance
between high-intensity subsurface peaks to the surface peak.
The third was a combination of both. The periodicity analysis
seems to benefit from the “bubbly” structural pattern in OCT
images of adipose breast tissue, which, however, is not
present in every type of tissue. Part of this method, taking the
FT of an A-scan, we compare with our method. �We did not
implement the periodicity technique.� This enabled us to test
the Fourier domain technique on sets containing more than
three groups.

1083-3668/2008/13�3�/034002/8/$25.00 © 2008 SPIE
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.1.2 Surface recognition
or OCT there is no established method for unsupervised sur-
ace recognition. This is, however, not straightforward as the
oint with the highest intensity within one A-scan is not nec-
ssarily correlated with the sample surface. This is also true
or taking the first derivative of the intensity; the largest
hange in intensity is not necessarily at the surface. Were this
he case, surface recognition could be done quickly and el-
gantly using a weighing of the magnitude and the derivative
f the signal intensity over the single A-scan. Specifically for
iological samples, this is prone to errors �cf. Fig. 1�.

There is a small amount of literature about surface recog-
ition in OCT and research groups seem to have methods that
eem fit for the purpose of their publication, but are not al-
ays useful to implement for a different specimen type. We

ound a variety of reports, e.g., shapelet-based boundary
ecognition;7 rotating kernel transformation, which empha-
izes straight lines within an image;11 erosion/dilation tech-
iques on a binary threshold image;8 or polynomial fitting
hrough median-blurred intensity peaks.12

We chose binary thresholding because it is accurate and
ast. A visualization of the full process is shown in Fig. 2.

.2 Research Questions
n this paper, we investigate whether OCT data can be classi-
ed in real time on the basis of A-scans without any input
rom a human operator. We investigate the classification per-
ormance on a small demonstrator group, and plan to assess
he impact of surface normalization. We further investigate
hether representative measures can be established for larger
ata sets, which strain computer resources. Finally, we inves-
igate the performance on animal tissue.

ig. 1 �a� Denoised B-scan of a biological sample �porcine esophag
overlay over dimmed intensity image�, �c� white dots mark maximu
ecognised from a binary threshold mask. �b� and �c� show that the ma

ig. 2 �a� Original noisy OCT image �false color log of intensity envel
lthough somewhat straight, is not exactly parallel to the scanning d
ecognized from �b�; and �d� image after wrapping.
ournal of Biomedical Optics 034002-
2 Methods
2.1 Measurements

2.1.1 OCT device
The OCT device used in this study was a time-domain bench-
top system, which was similar in design to the system de-
scribed by Yang et al.13 The light source is a superluminescent
diode �SLD, Superlum� with a central wavelength of
1310 nm that provided an axial resolution of �15 �m in air
and a 10-�m lateral resolution. The rapid delay line is real-
ized using a double-pass mirror and a reference mirror
mounted on a galvanometer �Cambridge Instruments�. The
data acquisition was performed using LabVIEW.

2.1.2 Samples
As a demonstrator of proof of concept, fruit and vegetables
served as readily available samples with varying structure
�Fig. 3�. Ten scans were taken of each vegetable; three veg-
etables of one kind form a group. In addition to this, fresh
porcine specimens were obtained from a local butcher.
Twenty different samples were prepared from each investi-
gated organ, although all specimens originate from one ani-
mal. The size and shape of the samples enabled them to be
placed in petri dishes for the measurements. Where necessary,
samples were kept stable with needles.

2.2 Preprocessing

2.2.1 Image
All images used in this study measure 300�500 pixels, cov-
ering a 3-mm width and an approximately 5-mm depth. The
log of the intensity data �time domain signal� was stored as a
matrix. Values were handled in double precision format. For
the automated noise reduction, a ribbon of “air,” intensity in-

� white dots mark the point of highest intensity within one A-scan
of change in intensity within one A-scan, and �d� surface pixels as
intensity and derivative do not necessarily correlate with the surface.

ta�, representative for many ex vivo scans, where the sample surface,
n; and �b� binary image using a 0.90 quantile threshold; �c� surface
us�, �b
m rate
ximum
ope da
irectio
May/June 2008 � Vol. 13�3�2
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ormation above the surface, was regarded as background
oise level.14 The mean of this plus 7� the standard deviation
f this background signal was used as the intensity threshold.
his relatively high threshold does crudely cut off low-level
ignals from deeper areas. We found it, however, to be more
mportant for our subsequent surface recognition to have a
oise-free image, with the surface not being obscured by arte-
acts or layers.

The scanning protocol therefore required an area of air
bove the surface. We aimed to cover approximately 1/5 to
/3 of the image height, as this was convenient for manual
andling. The surface of the sample was positioned to ensure
hat the full penetration depth could be depicted on the image.
pecimens were placed so that the beam angle would not
ause excessive reflections. While these limitations for the
istance of the probe to the sample were chosen with respect
o easy handling, no measurement was taken from the same
ite, as that would spoil the validity of the subsequent corre-
ation.

After thresholding, the intensity values of one B-scan were
ormalized to the maximum intensity peak, by scaling to the
aximum peak being unity.

.2.2 Surface recognition and normalizing
etecting the surface based on a binary threshold mask of the

mage, as shown in Fig. 2, is an approach we found to be
obust for the purpose of our preprocessing. After finding no
ubstantial influence on the result for threshold levels between
.85 and 0.975, we arbitrarily defined a 0.95 quantile thresh-
ld for creating a binary image. The first pixel of this mask
as taken as the surface. No smoothing or correction of even-

ual outliers �e.g., reflection artefacts� was performed. Nor-
alizing to the surface was achieved by shifting each A-scan

ccording to the surface vector.
Of these images, we calculated several representative mea-

ures of the depth profile of the intensity variation within one

ig. 3 Representative OCT images of vegetables �after denoising, to b
eek, longitudinal; �d� leek, axial; �e� onion; �f� potato; �g� mushroom s
width of 3 mm. Note the somewhat similar appearance of �c� and �
ournal of Biomedical Optics 034002-
image: the mean B-scan, median B-scan, standard deviation,
or the mean divided by the standard deviation15 �M/SD�. Fur-
thermore, we looked into combinations of these, e.g., M/SD
and mean as two representative measures for one B-scan. We
also used the FT of an A-scan to be able to roughly compare
our results with the approach of Zysk and Boppart.10

2.3 Data Analysis
Data handling, preprocessing, PCA, and LDA were performed
using MATLAB V6.1.0.450, Release 12.1 �The MathWorks,
Inc.�, extended by the “PLS_Toolbox” �Eigenvector Research,
Inc.� and our in-house tools �“Classification_Toolbox”�. Em-
phasis was put on speed, and therefore execution times were
assessed using the tic-toc functions and the “profile” function
in MATLAB. Bottlenecks, e.g., the routine to normalize
A-scans to the surface, were vectorized.

We did not perform mean centering of the data as we
found this to have no effect on the quality of results �data not
shown�. Using PCA, the data was reduced to the first 25 prin-
cipal components �PCs�, which were then sorted in order of
their statistical significance, characterized by their respective
F values determined by an analysis of variance15 �ANOVA�
�p�0.001�. �The number of PCs �25� was chosen arbitrarily
and is not fundamental to the method. The number of PCs
does affect the results �data not shown�, but for the purpose of
this paper, whereby different approaches are studied, a con-
stant of 25 PCs is a fair representation.�

These 25 PCs were then used in their entirety for LDA,
which is inherently able to suppress loadings of lower signifi-
cance for the model. The training model was tested using
leave-one-out cross-validation. For a small group �30 scans�,
one measure was left out: one A-scan when classifying sepa-
rate A-scans, or one representative measure when classifying
the representative measures �leave-on-scan-out, LOSO�.
While for the LOSO cross-validation, each prediction data set
is “unknown” to the algorithm, the training model can still

nto surface recognition�: �a� celery, longitudinal; �b� Celery, axial; �c�
� mushroom top; �i� lemon; and �j� lime. All B-scans in this paper have
and �h�, and �i� and �j�.
e fed i
tem; �h
d�, �g�
May/June 2008 � Vol. 13�3�3
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nclude data from the very same sample. A better cross-
alidation approach is therefore to test a classification model
ith a prediction set whose samples are “unknown” in their

ntirety. This is achieved by splitting the data into a training
roup and a prediction group �leave-one-group-out, LOGO�.
or the large sample groups �330 scans� we created a training
odel from 220 randomly chosen scans, and evaluated the

rediction performance for the remaining 110 scans, which
re unknown to the test model. These 110 scans were from
ifferent samples than the 220 training scans. In this way,
ross-validation could be performed on three different combi-
ations. The mean of the results for the three cross-validations
or one set of samples we accept as classification perfor-
ance. For comparing pairs of similar vegetables and the ani-
al samples, a prediction model was created using a ran-

omly assigned half of the B-scans of each group and cross-
alidated using the other half of the B-scans. Also here, test
nd prediction groups were from different samples, and the
ean of the two results was taken as overall performance.

Results
he images appear typical of common OCT image quality.
epresentatives of fruit and vegetable structures are shown in
ig. 3. Distinguishing such images, when they are presented
ext to each other, is fairly easy. However, when working

ig. 4 �a� Mean A-scan of original data, �b� mean A-scan of surface
ormalized image, and �c� M/SD along row of A-scans: �—� surface
ormalized and �- - -� original.

ig. 5 PCA of three vegetables, 10 images each. The plots show the P
f 25: �a� surface normalized and �b� FT of A-scans �no surface norm
ournal of Biomedical Optics 034002-
through a large quantity, some of these could start to look
similar to an insufficiently trained or overworked eye.

The results section is divided into two groups. Part 1
shows the effects of preprocessing and demonstrates the ratio-
nale for choosing our parameters. Part 2 shows the actual
classification results.

3.1 Part 1: Preprocessing

3.1.1 Surface recognition and normalizing
Vectorization reduced the processing time roughly by a factor
of 4 to 5. The visual results of the unsupervised surface nor-
malizing were effectively shown in Fig. 2�d�. Figure 4 shows
how normalizing to the surface affects the mean and the
M/SD of a B-scan.

3.1.2 Vegetables—separate A-scans
In a first approach, we used 10 images of three vegetables,
resulting in 30 images or 9000 A-scans. Performing PCA on
the surface normalized A-scans �Fig. 5�A�� or nonsurface nor-
malized FT curves �Fig. 5�B�� show a tendency to group, but
also considerable overlap. Note that the plots in Fig. 5 show
only the two most significant �ANOVA� PCs for classification
against each other. The subsequent LDA separates on the ba-
sis of a pool of several PCs �25 in the examples of this paper�.

Table 1 shows the performance of classification models for
this case. For the amplitude of the frequency content, surface
normalization does not improve the classification. For classi-
fying time domain data �spatial information�, surface normal-
ization yields a higher rate.

3.1.3 Data reduction prior to PCA
The classification rates in Table 1 are not disappointing, but
take a long time to calculate. Hence we reduced the B-scan to
a representative measure, as shown in Fig. 6. From the mean
of these images, the separation is clearer than in Fig. 5. For
this approach, surface normalization has a stronger impact

000 A-scans with the two highest scores �determined by ANOVA� out
n�. Legend: �=celery; �=onion; +=mushroom.
Cs of 9
alizatio
May/June 2008 � Vol. 13�3�4
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han before: classification was correct in 93.3% for the
urface-normalized data �Fig. 6�A��, but only 33.3% for not-
urface-normalized data �Fig. 6�B��.

.1.4 Data reduction—large dataset
large data set consisting of 330 images, categorized into

ine groups, was used to assess various representative mea-
ures. These 99,000 A-scans could not be fed into analysis on
Pentium type processor with 1 Gbyte of RAM, so it was

ssential to extract a representative measure. Table 2 shows
he results for data reduction. For time domain data, models
reated using the mean normalized by the standard deviation
M/SD� had the best results, as shown in Table 2. For models
rom the FT of an A-scan, the standard deviation �SD� has the
ighest classification score. After LOGO cross-validation, the
odel constructed from the mean values has a higher score.

.2 Part 2: Classification
rom the results so far, combinations with high scores were
hosen for further comparison: surface normalization with
/SD, and the mean and the SD of the amplitude of the FT.
e abbreviate these as SN-MSD, AFT-M, and AFT-SD, re-

pectively.

able 1 Comparison for classification of three A-scan representa-
ions: the FT, the amplitude of the FT, and time domain data.

reprocessing FT Amplitude of FT
Depth profile

�A-scan�

ithout surface
ormalization

65.4 96.1 65.4

urface
ormalization

92.8 95.8 92.8

he data set consisted of three groups of 10 images each �9000 A-scans�.
cores are percentages correctly classified by the algorithm, after LOSO cross-
alidation.

ig. 6 PCA of three vegetables, 10 images each. The data points show
urface normalized and �b� no surface normalisation. �=celery; �=o
ournal of Biomedical Optics 034002-
3.2.1 Vegetables
A different set consisting of 330 images, categorized into
seven groups, was classified correctly �after LOGO cross-
validation� as follows: SN-MSD, 91.8%; AFT-M, 93.9%; and
AFT-SD, 79.1%. For comparison, the non-surface-normalized
approach reached 32.0% in this case.

3.2.2 Similar image types
In the next step, we assessed the classification of similar im-
ages, i.e., measurements of one type of vegetable with differ-
ent orientation, or similar images �lemon versus lime�. Repre-
sentative B-scans are shown in Figs. 3�G�–3�J�. Classification
results for 30 images each are shown in Table 3.

o highest scoring PCs �ANOVA� of the 30 representative measures: �a�
=mushroom.

Table 2 Training performance �TP� and cross-validation �CV� of a
data set consisting of nine groups; seven groups of 30 images each
and two groups of 60 images each �330 representative measures�.

A-Scana FT of A-Scanb

Representative
Measure TPc LOSOd LOGOe TPc LOSOd LOGOe

Median 86.7 80.0 81.6 88.8 83.3 82.7

Mean 88.2 84.2 81.6 90.0 86.4 86.7

SD 86.4 77.6 72.9 91.2 85.5 85.1

M/SD 92.1 86.1 82.0 90.0 85.5 81.8

Scores are percentages correctly classified by the algorithm, before and after
cross-validation. The highest scores are bold.
aSurface-normalized time domain intensity data,
bamplitude of FT �nonsurface-normalized� A-scan,
ctraining performance,
dleave-one-scan-out cross-validation,
eleave-one-group-out cross-validation.
the tw
nion; +
May/June 2008 � Vol. 13�3�5
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.2.3 Similar images in a large group
f groups are similar, further added groups do decrease the
ower of the separation. To show this, we grouped two veg-
tables to yield four groups. Separation is affected when these
wo groups must be distinguished not only from each other,
ut also among other data, as shown in Table 4.

.2.4 Preliminary tissue pilot study
xtending on the vegetable findings, we used porcine samples

or a preliminary tissue pilot study. We measured 20 sites each
f four different tissue types �tongue, esophagus, tracheae,
nd bronchioles�. Representative images are shown in Fig. 7.
he results for PC-fed LDA classification are encouraging.
fter LOGO cross-validation, the four, albeit clearly distinct

issue types, are classified 90.0% �SN-MSD�, 82.5% �AFT-
�, and 70.0% �AFT-SD� correctly.
To see whether more subtle changes can be picked up, we

ooked at samples from one tissue type �esophageal� measur-
ng them in a fresh state, after degradation for 5 days, and
fter application of 5% acetic acid, a contrast agent that is
sed in clinical settings. These three groups can be separated
ell between each other in 91.7% �SN-M/SD�, 93.3% �AFT-
�, and 76.7% �AFT-SD� of the cases �LOGO cross-

alidated�.

Discussion
CT provides structural images that are intuitive to look at

nd this might even be an important aside for this technology
o become accepted by many users. Evaluation of such struc-
ural data seems straightforward; however, it remains a chal-
enge in detailed areas. This is evident for an imaging tech-
ology that enables one to look closely at areas that
reviously have been impossible to observe.

ig. 7 Representative OCT images of porcine samples: �a� squamous
mage covers 3 mm in width.

able 3 Classification rates after LOGO cross-validation; training
odels were created for pairs of similar images �2�30 images for a
air�.

Representative Measure �%�

ype of Similar Images SN-MSD AFT-M AFT-SD

elery �two orientations� 56.7 68.3 86.7

eek �two orientations� 61.7 63.3 80.0

ushroom �two orientations� 96.7 90.0 90.0

emon versus Lime 83.3 95.0 95.0
ournal of Biomedical Optics 034002-
Acquisition speed enables generation of high-resolution
volumetric real-time data; this is difficult to handle and dis-
play meaningfully and will remain complex to interpret in the
future. Searching through a vast voxel space can hardly be
imagined to be an enjoyable task for a human operator.

4.1 Preprocessing

4.1.1 Time domain data and frequency content
Classification requires preprocessing. Both methods, the am-
plitude of the FT of an A-scan and the surface normalized
A-scan, give good results. The FT we used to create a model
differed in four points from that of Zysk and Boppart.10 First,
our denoising and normalizing, as already described, was dif-
ferent. Second, we were using the FT of the A-scan for clas-
sification, and not the difference from a reference. Third, Zysk
and Boppart report that they did perform surface normalizing
�“truncating”� prior to FT, whereas we found that to be ben-
eficial only when feeding the real and the imaginary part of
the FT. However, we achieved better results when using the
amplitude of the FT directly of the non-surface-normalized
A-scan. Finally, we took a representative measure for a set of
A-scans and classified the set, rather than classifying single
A-scans.

It then probably depends on the sample structure, e.g., the
presence of distinctive periodic patterns, whether the fre-
quency information or time domain data enable a better clas-
sification. Time domain data must be surface normalized. This
requires a robust and quick surface recognition and means an
additional computational step.

We are aware that the data for this paper are suitable for
binary thresholding as surface recognition, and that the con-
verse is not necessarily always the case. Such scenarios could
be imagined where the surface of interest is covered by a

Table 4 Classification rates after LOGO cross-validation; training
models were created for sets of pairs of similar images �2�30 images
for a pair�.

Representative Measure �%�

Type of Similar Images SN-MSD AFT-M AFT-SD

Two mushroom orientations,
lemon versus lime

90.8 91.7 86.7

All four pairs �eight groups�
from Table 3

67.1 74.2 82.1

of the esophagus, �b� tongue, �c� tracheae, and �d� bronchioles. Each
lining
May/June 2008 � Vol. 13�3�6
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ayer of mucus, a sheath, a balloon, or something similar.
esearch into more robust and reliable surface detection algo-

ithms would therefore be beneficial.

.1.2 Representative measure
educing the data to a representative A-scan is necessary; our
entium type processor with 1 Gbyte of memory was not able

o handle data sets of tens of thousands of A-scans. More
owerful computers are of course available, but it is conceiv-
ble that OCT data will stretch these resources to the limit for
he near future. We found that the M/SD of a surface-
ormalized B-scan or the mean of the frequency content yield
ood results. For instance, at separating two similar celery
rientations, the SN-MSD approach practically fails �56.7%�,
hereas the AFT-SD reaches over 80%. For classifying por-

ine tissue, the SN-MSD approach had the best result. In the
ase of variations within a B-scan, such as in Fig. 8, standard-
zing using the SD does improve results for the subsequent
lassification.

In terms of preprocessing, we also investigated mean cen-
ering, and using more than one representative measure �data
ot shown�. We did not perform any correction of the surface
ector in this study, although that is beneficial �data not
hown�. Further, the performance of LDA can be improved by
eeding an optimum number of PCs. However, this optimum
epends on the number and kind of groups in the classifica-
ion model. The different sample groups in this study do have
ifferent optimum numbers of PCs. For instance, for classify-
ng four tissue types, the classification performance, using 25
Cs, was 90.0% �SN-MSD� and 82.5% �AFT-M�. For these
roups, the optimum for SN-MSD would be reached by feed-
ng 11 PCs �97.5% LOGO cross-validated�, and for AFT-M 7
Cs �91.3%�. For the purpose of this demonstration, we de-
ided to keep a fixed number of PCs. It might well be worth
nvestigating a combination of two or more measures, and
utomatically refining extracted measures. However, this is
eyond the scope of this paper and is probably only worth-
hile when refining the technique for a dedicated purpose.
ummarizing, it is possible to improve results by fine-tuning
nd combining parameters.

.1.3 Speed
ne criterion for processing is speed. OCT acquires data in

eal time and hence the subsequent analysis should not impact
n this characteristic. Preprocessing does slightly delay re-

ig. 8 �a� Surface-normalized B-scans, where the depth profile is ho-
ogeneous across the scan width and can be well described by a
ean A-scan, and �b� structures that result in different A-scans, e.g.,
-scans at the two white lines will be different. In this situation, a

tandardized mean seems to better represent the B-scan.
ournal of Biomedical Optics 034002-
sults: on a 2.80-GHz Pentium 4, classification of 330 B-scans
takes approximately 85 s, of which 73 s are required for sur-
face normalization and extracting a representative measure.
That corresponds to roughly 60,000 A-scans/min and makes
us confident that the claim of providing a near real-time mo-
dality remains justified. It would be quite remarkable for a
human operator to classify 330 images in 1 1

2 min. However,
we were only using a run-length-encoded programming lan-
guage for proof of principle; compiled programs run much
faster.

4.2 Classification
Robust cross-validation methods are important for testing
LDA. It is a powerful approach, and for a small enough set of
samples some separation into groups can always be expected.
For instance, in the example of 30 images, the model created
by LDA was able to classify 100% correctly even without
surface normalization. After cross-validation, the surface-
normalized model was classified in 93.3 versus 33.3% for the
not-surface-normalized model.

4.2.1 Relevance for medical data
The fact that the algorithm reaches over 90% accuracy in
certain cases is reassuring when looking at obviously different
images, but for our data set the displayed approach is also
able to differentiate images reasonably well that are difficult
to tell apart by the eye. Further, the algorithm is still able to
classify similar images among a pool of other structural data.

This is important as we plan to apply this algorithm to
medical data. There, we expect a larger variation among
healthy individuals, and only eventually the small, but signifi-
cant alterations for early, nonsymptomatic disease. As an ex-
ample, we note epithelial cancers, carcinomas, where the epi-
thelial thickness of the healthy population can vary
considerably due to various factors. However, the subtle alter-
ations of proliferative epithelial cells close to the basal layer
are probably the feature that can be picked up by OCT scans.
It still remains to be assessed whether the algorithm would
fail in such scenarios.

4.2.2 Limitations and benefit
In this study the imaging protocol is strict in the sense that it
requires the penetration depth to be fully exploited and to
leave an area of air above the surface. However, most imaging
must adhere to a protocol. As long as the operator is made
aware of the requirements, we believe this limitation not to be
substantial. After all, we have acquired thousands of images
in this way.

The advantage we see in the presented algorithm is that the
few parameters utilized here are robust enough for the analy-
sis to be automated and in near real-time. It does not require
assigning areas of interest. It does not rely on specific struc-
tures such as previously reported methods, but can still be
used in combination with these algorithms. Hence, this algo-
rithm is straightforward to implement for existing OCT data.

Note that, although we were taking representative mea-
sures of B-scans, this approach will work on volumetric data.
For example, taking a representative measure of a volume
May/June 2008 � Vol. 13�3�7
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onsisting of 20�20 A-scans on a system with 10-�m lateral
esolution will enable classification of 25 “tiles” /mm2, which
s still superb for targeting clinical treatment.

.2.3 Further work
revious studies16,17 have shown that expert histopathologists
o not always fully agree on classification of tissue speci-
ens, and an algorithm with lower than 100% correct classi-
cation can still outperform subjective human assessment. In
linical work, OCT data would have to be compared to histo-
athologic results. Even though there are significant discrep-
ncies found between expert pathologists on particular pathol-
gy groups,16,17 histopathology is defined as the gold
tandard. Therefore, we must base our analysis on the as-
umption that the sample pathology defined by histopathology
s correct. In this study, we did not investigate the perfor-

ance of the algorithm against a human operator, and hence
ssumed a 100% correct classification as a reference baseline.
n the future, we intend to compare classification results with
hose achieved by histopathologists on the same OCT images
rom biological specimens.

The next step is testing this algorithm on medical OCT
mages. We expect it to distinguish structurally different pa-
hologies correctly. In ongoing work, we are investigating
ow well it classifies disease groups with quite similar appear-
nce, such as mild and moderate dysplasia in early cancer
evelopment.
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