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Abstract. Recent advances in metasurface lenses (metalenses) have shown great potential for opening a new
era in compact imaging, photography, light detection, and ranging (LiDAR) and virtual reality/augmented reality
applications. However, the fundamental trade-off between broadband focusing efficiency and operating
bandwidth limits the performance of broadband metalenses, resulting in chromatic aberration, angular
aberration, and a relatively low efficiency. A deep-learning-based image restoration framework is proposed
to overcome these limitations and realize end-to-end metalens imaging, thereby achieving aberration-free
full-color imaging for mass-produced metalenses with 10 mm diameter. Neural-network-assisted metalens
imaging achieved a high resolution comparable to that of the ground truth image.
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1 Introduction
The unyielding pursuit of miniaturization and performance en-
hancement in optical imaging systems has led to the exploration
of innovative technologies beyond conventional geometric lens-
based systems. While foundational to modern optics, these sys-
tems face inherent limitations, such as chromatic1,2 and spherical
aberrations,3,4 shadowing effects,3,4 bulkiness,5,6 and high manu-
facturing costs.7–12 The quest to transcend these barriers has cata-
lyzed the advent of metalenses, a groundbreaking development
poised to redefine the landscape of optical engineering.

Metalenses, characterized by their ultrathin films with meticu-
lously arranged subwavelength structures called meta-atoms in-
terspersed throughout, emerged as a revolutionary alternative to

overcome the drawbacks of conventional lenses. In a recent
study, deep-ultraviolet immersion lithography was combined
with wafer-scale nano-imprint lithography to mass-produce
low-cost and high-throughput large-aperture metalenses, con-
tributing to their commercialization.13 This novel class of lenses
also promises to rectify the aforementioned issues existent in
conventional optics and opens a new era of compact, efficient
imaging systems.1,14 Central to the appeal of metalenses is their
ability to serve as optimal substitutes for traditional optical
elements and thereby revolutionize a broad spectrum of appli-
cations. This encompasses not only the enhancement of
capabilities of optical sensors,15 smartphone cameras,16,17 and
unmanned aerial vehicle optics18–20 but also the transformation
of user experiences facilitated by augmented and virtual reality
devices.21,22 The potential of unparalleled diffraction-limited fo-
cusing within an ultra-light and ultra-compact form factor, even
in high-NA regimes,23 a feat unattainable by traditional compo-
nents, is the key attribute contributing to these advancements.
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Despite these strides, the pursuit of broadband metalenses
uncovers a multifaceted trade-off among focusing efficiency,
lens diameter, and spectral bandwidth,24,25 with the last signifi-
cantly affected by chromatic aberration.26,27 This interplay high-
lights the inherent complexity in optimizing these lenses, where
improvements in one aspect may lead to compromises in others.
In addition, meta-atom-based metalenses exhibit a narrow field
of view (FoV) stemming from angular dispersion inherent in
meta-atom-based designs.28 Consequently, at present, reported
broadband metalenses exhibit chromatic aberration4,27 or low fo-
cusing efficiency over a large bandwidth,1,6 which impedes the
commercialization of metalens-based compact imaging. This
compromise, by rendering the attainment of high-efficiency
broadband focusing alongside minimal chromatic and angular
aberration a considerable challenge, substantially restricts the
performance and the range of potential applications of metal-
enses. Even for the ideal metalens, it may not simultaneously
satisfy broadband operation and large diameter due to the physi-
cal upper bounds.24 Moreover, the limitations inherent in con-
ventional design approaches complicate efforts to effectively
address these challenges in metalens development.

Recent advancements in planar lens technology have signifi-
cantly improved the control of chromatic aberration, a critical
factor in full-color imaging. The technique of frequency-
synthesized phase engineering, proposed by Zhang et al.,29 uses
cascaded cholesteric liquid crystal layers to achieve RGB
achromatic focusing. However, while this approach is promis-
ing, especially in the context of single-focal-plane focusing of
RGB light, it does not address the challenges of scalability and
mass production for practical applications.

In direct response to these challenges, we introduce an inno-
vative, deep-learning-powered, end-to-end integrated imaging
system. By synergizing a specially designed large-area mass-
produced metalens13 with a customized image restoration frame-
work, we propose a comprehensive imaging solution poised to
supplant conventional geometric lens-based systems. The pro-
posed system not only effectively addresses the aberrations
mentioned above but also leverages the inherent strengths of
large-area mass produced metalenses to make a significant step
toward high-quality, aberration-free images. Moreover, our
approach distinguishes itself by suggesting a metalens image
restoration framework that can fit any metalenses suffering from
aberrations or low efficiency. Also, assuming the uniform qual-
ity of mass-produced metalenses, the optimized restoration
model can be applied to other metalenses manufactured with
the same process. The proposed imaging system may pave the
way for the next generation of compact, efficient, and commer-
cially viable imaging systems.

Other recent studies have also explored novel methodologies
to address chromatic aberration and other optical challenges.
Tseng et al.30 developed a neural nano-optics system that inte-
grates meta-optical design with deep learning to enhance image
reconstruction. Their fully differentiable framework optimizes
both the physical design of the metalens and the accompanying
image processing algorithms, demonstrating significant im-
provements in field-of-view and color consistency. Similarly,
Maman et al.31 and Dong et al.32 employed hyperboloid meta-
lenses combined with deep learning to achieve RGB achromatic
imaging, offering detailed insights into aberration correction
and optical performance. These studies mark substantial
progress over traditional achromatic lens designs, advancing
the field of chromatic aberration correction. A recent study33

also introduced an end-to-end metalens design approach facili-
tated by computational postprocessing, offering valuable insights
into the integration of learning processes with metalens design
methodologies.

In contrast to these recent approaches, our system leverages a
mass-produced metalens while incorporating a deep-learning-
based image restoration framework, offering a scalable and
high-performance solution for full-color imaging. By compen-
sating for aberrations and efficiency loss, our system ensures
broader applicability across various imaging applications.
Furthermore, our approach demonstrates a unique advantage
through the use of position embedding techniques, enabling
the restoration of highly blurred images caused by complex
aberrations. This positions our work as a significant advance-
ment over existing solutions, with the potential to revolutionize
optical imaging technologies.

In summary, this work propels metalens technology to new
heights and underscores the transformative potential of deep
learning in initiating a paradigm shift in optical imaging.
Through our end-to-end imaging framework, we not only dem-
onstrate a viable pathway to surmount traditional optical limi-
tations but also pave the way for a novel era in compact and
efficient imaging solutions. This breakthrough has the potential
to revolutionize the field of optical engineering, sparking new
avenues of research and innovation.

2 Methods
A schematic of our end-to-end integrated imaging system is
shown in Fig. 1. This system combines a metalens-based imag-
ing system and a subsequent image restoration framework. The
former component is tasked with acquiring the image, whereas
the latter is responsible for restoring the captured image. When
tailored to restore the image produced by the metalens imaging
system automatically, the framework can independently gener-
ate an output image that closely approximates the quality of the
ground truth image.

The metalens designed in this work is composed of an array
of nanostructures with arbitrary rotational angles, with the class
of metalenses designed this way being known as the
Pancharatnam–Berry (PB) phase-based metalens. Despite the
ability of these PB-phase-based metalenses to achieve diffrac-
tion-limited focusing,5,13 they are not without their challenges.
The dispersion of the meta-atoms can induce chromatic aberra-
tion, a characteristic similarly observed in diffractive lenses.26

Substantial efforts have been made to achieve achromatic metal-
enses through dispersion engineering of meta-atoms,1,6 adjoint
optimization,34,35 and many other methods.36,37 However, the
resulting metalenses still suffer from relatively low efficiency
compared to single-frequency metalenses. Also, PB-phase-
based metalenses are concurrently susceptible to angular aber-
ration that originates both from Seidel aberrations3 and angular
dispersion of the meta-atom.28 The combination of these factors
sets our full color high resolution imaging apart from conven-
tional restoration tasks,38,39 thereby significantly complicating
the task of restoring images captured by the metalens to their
original state. Our framework thus addresses and rectifies the
aberration issues of the metalens using a customized deep learn-
ing approach.

Specifically, prior to training, we gathered hundreds of aber-
rant images captured by the metalens imaging system, which we
refer to as “metalens images.” Metalens images, which exhibit
the physical defects of the metalens, were then used to train the
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image restoration framework. The result is a significant en-
hancement in the quality of the image produced by the compact
metalens imaging system. The framework employed in this pro-
cess is composed of two primary stages. In the first stage, the
framework is optimized to reduce the discrepancy between the
outputs of its restoration model and the ground truth images.
Following this, an adversarial learning scheme that incorporates
an auxiliary discriminator is utilized to augment the image re-
storation model’s ability to recover lost information.

By concatenating our restoration framework to our imaging
system comprising our mass-produced metalens, we construct
an integrated imaging system that delivers high-quality compact
imaging. This system is scalable to larger apertures and different
wavelengths, thereby offering an optimal solution for a novel
miniaturized imaging scheme. Importantly, the reproducibility
of both the imaging system and the restoration framework
not only enhances the commercial viability of this integrated
system but also suggests that the commercial application of met-
alenses could become a reality in the near future. In the follow-
ing sections, we elaborate on the construction of the integrated
system, starting from the metalens to the image restoration
framework.

2.1 Metalens Imaging System

Metalenses are fabricated through nanoimprint lithography and
subsequent atomic layer deposition.13 Nanoimprint lithography
provides the benefits of low-cost mass production and uniform-
ity of the products.7,8,13,40 Thus, we use imprinted metalenses
to broadly impact our work on the commercialization of the

deep neural network (DNN)-based metalens imaging system.
Figure 2(a) shows mass-produced 10-mm-diameter metalenses
fabricated by nanoimprint lithography and subsequent thin-film
deposition of TiO2; the details of the fabrication process are
given in Supplementary Material. As shown in Fig. 2(b), our
metalens comprises nano-slabs with arbitrary rotational angles
as a PB-phase-based metalens. It has a relatively high efficiency
of 55.6% at 532 nm wavelength but exhibits severe chromatic
aberration. As shown in Fig. 2(c), the focal lengths at wave-
lengths of 450, 532, and 635 nm are 29.0, 24.5, and 20.5 mm,
respectively.13 This wavelength-dependent focal length results
in transverse axial chromatic aberration (TAC), which can be
expressed as

TAC ¼ jf − f0j
D
2f

; (1)

where f is the focal length of the incident light with a single
wavelength, f0 is the distance between the metalens and image
sensor, and D is the diameter of the metalens. When f differs
from f0, the incident light forms a top-hat-like point spread
function (PSF) profile with a radius equal to that of TAC.26

Given this, the reduction in the overall TAC in the visible band
is important for high-quality metalens imaging because the blur
of the image intensifies proportionally with the increase in TAC.
Thus, we chose f0 to focus a green light to minimize the overall
TAC. When we focus the green light (532 nm) from a far
field, the red (635 nm) and blue (450 nm) lights are more de-
focused than the green light with TACs of 0.98 and 0.78 mm,
respectively.

Fig. 1 Schematic of our metalens imaging system.
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The metalens imaging system is affected by chromatic and
angular aberrations and its surface defects by incomplete fab-
rication. To quantify these effects, we measured the PSFs and
calculated the modulation transfer function (MTF) from the
measured PSFs. The PSF, which is the two-dimensional
(2D) intensity distribution obtained in response to a single
point light source,41 is a critical metric for evaluating the qual-
ity of an imaging system because it is directly related to image
formation.42 The MTF, calculated using the measured PSFs,
describes the imaging quality in terms of resolution and
contrast.41 We measured the PSFs by capturing the images
of collimated beams from red, green, and blue light-emitting
diodes (LEDs) using the metalens imaging system and sub-
sequently calculated the MTFs from the PSFs. The PSF mea-
surement and the imaging setup for it are shown in Fig. S2 in
the Supplementary Material and elaborated upon, and the MTF

calculation method is also subsequently explained in detail in
the Supplementary Material.

Figure 2(e) shows the PSFs of red, green, and blue LEDs i’th
various viewing angles (0 deg, 5 deg, 10 deg). The PSF profiles
of red and green LEDs show wide disk shapes, whereas the pro-
file of the green LED shows irregular spark shape, implying the
effect of the TAC. Thus, as shown in Fig. 2(d), the MTFs of the
red and blue lights are severely lower than the MTF of the green
light at all spatial frequencies. Furthermore, the PSF profiles at
0 deg viewing angle show non-ideal and circularly asymmetric
shapes, which can be attributed to the defects of the metalens
due to the imperfect fabrication. The PSF profiles also change
their shapes with the viewing angle due to the angular aberra-
tions, including Seidel aberrations3 and the angular dispersion of
the meta-atoms.28 The PSF profiles of the red and green LEDs
stretch to the horizontal direction as the viewing angle increases,

Fig. 2 (a) Photograph of fabricated mass-produced 10-mm-diameter metalenses on 4″ glass
wafer. The inset in the red box shows enlarged image of the metalens. (b) Scanning electron
microscopy (SEM) image showing the meta-atoms that compose the metalens. The scale bar
is 3 μm. (c) Focal lengths of the metalens for wavelengths of 450 nm (blue), 532 nm (green),
and 635 nm (red). The dashed line indicates the linear fitting result. (d) MTFs of red, green,
and blue lights with zero viewing angle. (e) PSFs of red, green, and blue lights with various viewing
angles (0 deg, 5 deg, 10 deg). The scale bar is 1 mm, which indicates a distance on the image
sensor. (f) Metalens image (left) and its subset images showing red, green, and blue color
channels. (g) Corresponding ground truth image (left) and its subset images showing red, green,
and blue color channels.
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where the profile of the blue light shrinks. In addition, the non-
uniformity of the metasurface during the fabrication process13

may result in the PSFs with complex profiles not matching the
PSFs from the Rayleigh-Sommerfeld diffraction formula.43 As
a result, the combination of these generates complex PSF pro-
files varying with the viewing angle and further complicates the
image restoration tasks.

The effects of chromatic and angular aberrations on the met-
alens images can be shown by comparing them against the
ground truth image. Figures 2(f) and 2(g) show the metalens
image, the corresponding ground truth image, and the subset
images depicting the red, green, and blue color channels.
The red and blue channels of the metalens image are severely
blurred from the TAC, making it difficult to recognize any ob-
jects. In addition, unlike the PSF measurements, the blue color
channel appears more blurry than the red color channel due to
the optical setup for data acquisitions as shown in Fig. S1 in the
Supplementary Material. The green channel of the metalens im-
age shows a relatively higher resolution at the center, which
gradually decreases as the viewing angle increases (e.g., the
outer region of the image) due to the angular aberrations at
the higher viewing angle.

2.2 Image Restoration Network

Computational image restorations have emerged as a prevalent
approach for the enhancement of non-ideal images, such as
those that are noisy44 or blurred.45 Classical image restoration
methods achieve higher resolution by relying on linear decon-
volution methods, such as applying the Wiener filter.46

Deconvolution, an inverse of the convolution operation, facili-
tates the recovery of the original image from an image con-
volved with a PSF. The performance of the deconvolution
process depends on two factors: the space invariance of PSF
across the FoV and the low condition number for the inverse
of the PSF.47 However, Wiener filters exhibit limited restoration
quality for imaging systems with PSFs that vary depending on
the viewing angle, such as metalens imaging systems36 and
under-display cameras.42

An alternative restoration approach is the utilization of DNN-
based image restoration. DNN-based restoration models38,39

have shown superior performance compared to traditional ap-
proaches in specialized tasks, such as denoising,44 de-blurring,45

super-resolution,48 and light-enhancement.49 Furthermore, they
are applicable to imaging systems with complex and combined
degradations, such as under-display cameras42 and the 360 deg
FoV panoramic camera.50 However, conventional DNN ap-
proaches are incapable of learning position-variant image deg-
radations (e.g., position-dependent aberration of the metalens)
because these methods train models with randomly cropped
patches from full-resolution images, leading to the complete
loss of position-dependent information.

In response to these challenges, we propose an end-to-end
image restoration framework specifically tailored for the metal-
ens imaging system to address non-uniform aberration over the
wavelength and viewing angle. Contrary to the images that are
subjected to restoration in typical image restoration tasks,51,52

our metalens images exhibit more intense blur and significant
color distortion. Consequently, the restoration of metalens im-
ages constitutes a severely ill-posed inverse problem. To address
this critically underconstrained problem, we employ strong
regularization. That is, we model the traits and patterns of sharp

data, performing adversarial learning in Fourier space to train
the data distribution. Therefore, the restoration model fðyÞ is
trained by minimizing

Lðx; y; fÞ ¼ Eðx; fðyÞÞ þ λΦðfðyÞÞ; (2)

where Eðx; fðyÞÞ is the image fidelity term that approximates
the restored metalens image fðyÞ by the ground truth image
x, and ΦðfðyÞÞ is the regularization term that limits the space
of fðyÞ. Subsequently, we apply positional embedding to learn
the angular aberration of metalens imaging. Because the pro-
posed method utilizes information on the absolute coordinates
of randomly cropped patches, the model effectively trains the
highly space-variant degradations.

2.2.1 Network architecture

The architecture of our image restoration framework is depicted
in Fig. 3. Our framework incorporates existing DNN architec-
ture with our proposed methods. The training phase involved the
utilization of patches randomly cropped from images at their full
resolution, specifically 1280 × 800 in this study. Subsequently,
in the inference phase, the analysis was conducted on the entire
images at their original resolution of 1280 × 800. However,
we observed a statistical disagreement in the inference process
of the full-resolution image, as shown in Fig. S3 in the
Supplementary Material. To overcome this inconsistency, we
apply test-time local converter (TLC)53 in the test phase, which
yields a significant performance improvement. The detailed re-
sults are presented in Table S1 in the Supplementary Material.

The metalens used in our study exhibits intense chromatic
and angular aberrations, resulting in severe information loss
in the images captured with it. Therefore, we trained the model
according to the traits and patterns found in the underlying clean
images to efficiently restore a wide range of spatial-frequencies
and constrain the space of the latent ground truth images.
Because generative models can learn complex, high-dimen-
sional data distributions from a given dataset,54 we utilized
an adversarial learning scheme, one of the generative learning
methods, to learn effectively the distribution of latent sharp
images by introducing an auxiliary discriminator. We initially
applied adversarial learning in the RGB space but observed
that conspicuous pattern artifacts appeared in both the RGB
and Fourier spaces (Fig. S4 in the Supplementary Material).
These artifacts, related to periodic patterns, are more clearly
visible in the Fourier domain than in the RGB space due to
their deep connection with spectral components [Figs. S4(c)
and S4(d) in the Supplementary Material]. Since the Fourier
space provides a more explicit representation of these spectral
components, it allowed us to identify better and address the
source of the artifacts. Therefore, we transformed the data
from each RGB channel into the Fourier space for adversarial
learning. These Fourier space data are then used as input for
the discriminator.

The training loss is composed of two distinct terms: peak
signal-to-noise ratio (PSNR) loss LPSNR between the recon-
structed image x̂ and the ground truth image x and adversarial
loss La between Fðx̂Þ and F ðxÞ. The PSNR loss signifies the
image fidelity loss, and the adversarial loss indicates the prior
regularization loss. Therefore, the total loss function LTotal is

LTotal ¼ LPSNR þ λLa; (3)
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where λ is a hyperparameter for balancing LPSNR and La. LPSNR

is calculated as follows:

LPSNRðx̂; xÞ ¼ −10 log
R2

MSEðx̂; xÞ ; (4)

where x̂; x, and R denote the reconstructed image, ground truth
image, and the maximum signal value of the ground truth image,
respectively. MSE is the distance between the reconstructed
and ground truth images and is formulated as MSEðx̂; xÞ ¼
1
N

P
N
n¼1ðx̂n − xnÞ2.

For adversarial learning, we constructed an additional dis-
criminator and applied spectral normalization55 for training sta-
bility. In addition, we employ the GAN training scheme based
on hinge loss56 for enhanced stability of adversarial training. The
adversarial loss La of the discriminator (D) and the image re-
storation model (G) is

LD
a ¼ Ex½maxð0,1 −DðFðxÞÞÞ� þ Ex̂½maxð0,1þDðFðx̂ÞÞÞ�;

(5)

LG
a ¼ −Ex̂½DðF ðx̂ÞÞ�; (6)

where F refers to fast Fourier transform (FFT). Here, Ex½·� and
Ex̂½·� are operators that denote the calculation of the mean of the
ground truth and reconstructed images in the given minibatch,
respectively. The image restoration model and discriminator
each try to minimize LG

a and LD
a , respectively.

Degradation in the outer region of the metalens image is
more pronounced than in the central region due to the angular
aberration. This observation suggests that positional informa-
tion is integral for understanding the degradation of the metalens
imaging system. However, the training method makes it impos-
sible for the model to learn positional information because our
framework learns through random patches during training and
restores full-resolution images during inference.

To address this problem, we take the coordinate values of
each pixel of the patches, based on the coordinates of a full

resolution image, and map them through a 1 × 1 convolutional
layer. This process transforms them into proper space when gen-
erating random patches for a full-resolution image. The proc-
essed coordinate information is concatenated with metalens
images corresponding to the information. The resulting concat-
enated data are used as input data. This approach enables the
model to learn and leverage positional information effectively,
thereby enhancing its performance in restoring full-resolution
images.

2.2.2 Data acquisition

The training data for the metalens imaging system were ob-
tained by capturing ground truth images displayed on the 85″
monitor (Fig. S1 in the Supplementary Material). For training,
we utilized the DIV2K dataset.51 This dataset contains 2K res-
olution images of various objects, thereby providing environ-
mental diversity. The ground truth images for training were
obtained by cropping the center of the dataset images by 1280 ×
800 resolution to ensure that the ground truth images fit within
the FoV of the metalens imaging system.

The positions of the objects in both the metalens image and
the corresponding ground truth image were matched for effec-
tive training. Rawmetalens images with 5472 × 3648 resolution
were rotated, cropped to 5328 × 3328 resolution, and resized to
1280 × 800 resolution to match the corresponding ground truth
images. The rotation angle and cropping parameters were
optimized to maximize the structural similarity index measure
(SSIM) between the metalens images and the corresponding
ground truth images. Finally, we divide the dataset into 628
and 70 images for training and testing, respectively.

2.2.3 Training details

As mentioned in network architecture section, training was
conducted using patches that were randomly cropped from full
resolution images. While larger receptive fields offer more com-
prehensive semantic information, they also increase the training
time and computational complexity. Consequently, to strike a
balance between performance and training duration in the pro-
posed model, we set the patch size at 256 × 256 and the batch

Fig. 3 Proposed image restoration framework. The framework consists of an image restoration
model and applies random cropping and position embedding to the input data using coordinate
information of the cropped patches. To address the underconstrained problem of restoring de-
graded images to latent sharp images, adversarial learning in the frequency domain is applied
through the FFT (F ). x̂ and x denote the reconstructed and ground truth image, respectively.
The details of the framework are in Sec. 2.
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size at 16. In addition, transformations such as horizontal and
vertical flips and transpositions were randomly applied, and
then coordinate information of the patches was loaded under
these configurations.

The model used in this paper can be divided into two com-
ponents, the first of which is the image restoration model. The
width of the starting layer of the network is set to 32, which
doubles as the network delves deeper into each successive level.
The encoder and decoder of the network are each composed of
four levels. To address the inconsistency between training and
testing, TLC is adopted during the testing phase. The numbers
of input and output channels of the 1 × 1 convolutional layer
that processes coordinate information are both set to 2. The sec-
ond part is the discriminator, where its width is set to 64, and all
layers have the same width. The discriminator is composed of
five blocks. Moreover, spectral normalization55 is applied to sta-
bilize the learning process. Additional information and configu-
rations of our architectures are provided in Table S3 and Fig. S5
in the Supplementary Material.

The training was executed in two stages. In the first stage, the
metalens images were restored to clean images using the image
restoration model, and in the second stage, adversarial learning
was performed using the discriminator after expressing the re-
stored and ground truth images in the spatial frequency domain
through fast Fourier transform (FFT). Because the spatial-
frequency domain data converted through FFT are complex
(comprising real and imaginary parts), these parts were repre-
sented as a 2D vector. This allowed the data in the spatial-
frequency domain to be expressed as real vectors, which were
then used as inputs into the discriminator.

During the training process, the number of iterations was set
to 300,000. In the image restoration model, AdamWwas used as
the optimizer with the learning rate initially set to 3 × 10−4 and
gradually decreased to 10−7 following the cosine annealing
schedule; the betas were [0.9, 0.9]. For the discriminator opti-
mizer, Adam was used with the learning rate set to 3 × 10−4,
identical to the restoration model, but the betas were set to
[0.0, 0.9]; NVIDIA RTX 4090 24 GB was used as a computa-
tional resource for this training.

2.2.4 Statistics details

Statistical hypothesis testing was performed using the statistical
functions of the SciPy library in Python using 70 test images.
Two-sided paired t-tests were used to compare the performances
of models at the P < 10−4 significance level.

3 Results
In this study, we have introduced a deep-learning-powered, end-
to-end integrated imaging system. We now assess its capability
in various perspectives to restore metalens images to their clean
states, addressing severe chromatic and angular aberrations in-
herent in our large-area mass-produced metalens. In order to
draw a comparison between the images produced by our frame-
work and those captured with the metalens, we restored a total
of 70 metalens images to their undistorted state. Given these
pairs of images, we conduct a thorough assessment of our sys-
tem’s efficacy in image restoration, employing a comprehensive
set of performance metrics tailored to each category of interest
under evaluation. We also compare our framework with state-of-
the-art models, including restoration models for natural images
(MIRNetv2,57 HINet,58 NAFNet38). Furthermore, we conducted
training and inference on newly collected outdoor images to

verify our framework’s learning capability (Figs. S7 and S8
in the Supplementary Material). Detailed information on out-
door image restoration is in the Supplementary Material.

Figures 4 and S6 in the Supplementary Material comprehen-
sively show the qualitative restoration results of our integrated
imaging system by comparing the ground truth, metalens, and
system outcome images. Notably, the images captured by the
metalens are marred by pronounced chromatic aberrations, man-
ifesting as a noticeable disparity in the clarity of red and blue
components in comparison to green, thereby engendering sig-
nificant blurring. Furthermore, this aberration is accompanied
by a loss in high-frequency information, leading to the erosion
of fine details present in the original images. A particularly
marked manifestation of this degradation is observed in the
peripheral regions (marked by a yellow box) as compared to
the central zone (highlighted by a red box) in Fig. 4, where
the images exhibit enhanced blurring, resulting in the oblitera-
tion of sharp details and the predominance of a specific hue.

Contrastingly, the images reconstructed utilizing our pro-
posed framework exhibit a remarkable fidelity to the ground
truth across both peripheral and central regions, demonstrating
the framework’s proficiency in reinstating details obliterated by
chromatic aberration. Such outcomes underscore the capability
of our framework to surmount the intricate challenges posed by
a highly irregular PSF, thereby significantly augmenting the
imaging performance across a spectrum of scenarios. This de-
notes a substantial stride toward mitigating the complexities
associated with aberration-induced degradation, heralding ad-
vancements in the fidelity and quality of imaging systems em-
ploying metalenses.

Despite the physical limitations inherent in metalenses,
which cannot be overcome through conventional manufacturing
processes alone, our application of deep learning enables imag-
ing capabilities that exceed the physical performance limits of
the metalenses. This innovative approach effectively bridges the
gap between the inherent physical constraints and the desired
imaging outcomes.

In the following sections, we present a comparative statistical
analysis based on the test dataset to assess the quality of image
restoration. This analysis further illustrates how our deep learn-
ing-enhanced framework not only compensates for the physical
limitations of metalenses but also significantly improves the
overall image quality.

3.1 Quality of Image Restoration

Figure 5 comprehensively shows the results of the PSNR, struc-
tural similarity index measure (SSIM), learned perceptual image
patch similarity (LPIPS) in RGB space, and mean absolute error
(MAE) of the magnitudes, as well as cosine similarity (CS) in
Fourier space calculated by comparing the metalens image and
the image reconstructed by our framework with the ground truth
image. The red horizontal lines in each box represent the
median, and the boxes extend from the first to the third quartile.
The whiskers span 1.5 times the interquartile range of the first
and third quartiles. We conducted a statistical hypothesis test to
ascertain whether the observed results exhibit statistically sig-
nificant differences. This was accomplished through the utiliza-
tion of a two-sided paired t-test to evaluate the performance
disparity between images produced by metalenses and those re-
constructed by the proposed framework. A significance level of
P ¼ 10−4 was set for the testing process.
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Within this analysis, the outcomes indicate a statistically sig-
nificant variance across all evaluated metrics, as evidenced in
Fig. 5. These metrics were assessed utilizing a test set compris-
ing 70 data points. Also, Table 1 shows the quantitative results
of the metalens imaging system, our framework, and state-of-
the-art models for various metrics. The implications derived
from each graph and the significance of the quantitative out-
comes are elaborated below, providing a comprehensive analy-
sis of the data and its relevance to the study’s objectives.

To further understand the impact of our framework on the
fidelity of image restoration, we examine PSNR and SSIM,59

which serve as the foundational metrics. The former is a quan-
titative measure of the restoration quality of an image, calculated
as the logarithmic ratio between the maximum possible power
of a signal (image) and the power of corrupting noise that affects
its fidelity. Higher PSNR values indicate better quality of the
reconstructed image. The latter, SSIM, valuates the visual im-
pact of three characteristics of an image: luminance, contrast,

Fig. 4 (a) Ground truth images, (b) metalens images, and (c) images reconstructed by our model.
The images are affiliated with the test set data. The central (red) and outer (yellow) regions of the
images are enlarged to access the restoration of the metalens image at high and low viewing
angle, respectively. The outer regions of the metalens images (yellow box) are successfully re-
stored, even though those are more severely degraded than the inner region (red box) due to the
angular aberration under high viewing angle.
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and structure, thus providing a more accurate reflection of per-
ceived image quality.

Figure 5 presents a statistical analysis comparing the PSNR
and SSIM values of the images captured through the metalens
with those restored by our framework. As shown in Table 1,
the framework showcased a remarkable improvement in
image fidelity, elevating the PSNR by 7.37 dB and SSIM by
22.5%p compared to the original metalens images. These en-
hancements underscore our framework’s proficiency in mitigat-
ing the fidelity loss incurred by metalens aberrations, thus
significantly elevating the quality of the reconstructed images
closer to their ground truths.

While PSNR and SSIM are advantageous for assessing im-
age fidelity and perceptual quality, they often fall short in evalu-
ating the structured outputs. This limitation stems from their
inability to fully capture the human visual system’s sensitivity
to various image distortions, particularly in textured or detailed
regions. To address this gap, LPIPS60 was employed to evaluate
the perceptual quality of the images. LPIPS evaluates perceptual
similarity by utilizing pretrained deep learning networks (e.g.,
AlexNet), offering a nuanced measure that aligns more closely
with human perception of image quality. Lower LPIPS values
indicate better perceptual quality.

Table 1 demonstrates that our framework achieved a 35.6%p
decrease in LPIPS, indicating a substantial enhancement in the
perceptual resemblance of the reconstructed images to their
original counterparts, as also observable in Fig. 5(c). This metric
highlights the proposed framework’s capability to not only im-
prove the objective quality of images but also their subjective,
perceptual quality. We also compare our framework with state-
of-the-art models, including restoration models for natural im-
ages (MIRNetv2,57 HINet,58 NAFNet38). As shown in Table 1,
our framework surpasses these state-of-the-art models by a sub-
stantial margin in terms of PSNR, SSIM, and LPIPS. In addi-
tion, we conduct further experiments to measure and compare
the restoration performance for spatially and spectrally varying
degradations (Tables S4 and S5 in the Supplementary Material).
This suggests that our framework is more suitable for the metal-
ens image restoration task than conventional models designed
for restoring natural images, such as those in the DIV2K
dataset.51

The measured MTF of the metalens in Fig. 1(d) and quali-
tative results in Fig. 4(b) demonstrate intense degradation at
high spatial frequencies. Consequently, it is crucial to restore
the spatial-frequency information during the metalens image
restoration task. It is pertinent to acknowledge that spatial

Fig. 5 Comparative statistical analysis of the proposed model and metalens imaging results
using the test dataset. (a)–(e) Results of PSNR, SSIM, LPIPS in RGB space and CS, MAE of
the magnitudes in Fourier space calculated by comparing the metalens image and the image
reconstructed by our framework with the ground truth image. A statistical hypothesis test
was performed through a two-sided paired t -test on the performance difference between the
metalens image and the image reconstructed by our framework [significance level P ¼ 10−4,
(a) 1.055 × 10−39, (b) 3.886 × 10−35, (c) 1.363 × 10−48, (d) 2.311 × 10−35, and (e) 2.150 × 10−38].

Table 1 Comparison of quantitative assessments of various models using the test set of images (n ¼ 70). The first and second values
of each column represent the mean and the standard deviation of the metrics, respectively. The best scores are marked as bold.

Image quality metric Assessment in frequency domain

Model PSNR SSIM LPIPS MAE CS

Metalens image 14.722/1.328 0.431/0.157 0.788/0.112 3.281/1.089 0.922/0.045

MIRNetv2 18.507/1.893 0.556/0.134 0.559/0.098 2.240/0.900 0.967/0.020

SFNet 18.223/1.727 0.567/0.129 0.519/0.095 2.194/0.837 0.965/0.020

HINet 21.364/2.333 0.641/0.121 0.456/0.097 1.851/0.800 0.982/0.013

NAFNet 21.689/2.382 0.642/0.120 0.440/0.097 1.817/0.801 0.983/0.013

Our framework 22.095/2.423 0.656/0.114 0.432/0.096 1.759/0.779 0.984/0.012
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frequency can be represented as both magnitude and phase com-
ponents, with the latter often heralded as important in signal
processing realms.61 We utilize two metrics to evaluate the mag-
nitude and phase of the Fourier-transformed reconstructed
images. In evaluating the fidelity of the reconstructed images,
particularly concerning their frequency-dependent attributes,
two metrics are employed: the MAE for assessing discrepancies
in magnitude relative to the original images, and the CS for
gauging phase congruence with the authentic images. These
metrics are derived through the application of the FFT across
images revitalized by disparate models. The ensuing MAE and
CS metrics underscore a remarkable enhancement in image
quality, as elucidated in Figs. 5(d) and 5(e) and Table 1. As
shown in these figures, our framework demonstrates the supe-
rior performance of MAE and CS to the metalens imaging
system and several state-of-the-art image restoration models
in the frequency domain. Our framework achieved about
twice the performance of the metalens imaging system for
MAE and accomplished about 14%p for CS for the metalens
images.

To demonstrate the restoration of the blur and color distortion
visually, we tested our imaging system using 1951 U.S. Air
Force resolution test chart images (USAF images). Figures 6(a)
and 6(b) show monochromatic white and black USAF images
captured by the metalens imaging system. These images exhibit
severe blurring and strong color distortion, particularly showing
greenish tints in white patterns. As shown in Figs. 6(c) and 6(d),
the restored images illustrate that the pattern’s colors are closer
to white and black than the metalens images. Furthermore, the
central regions of the images exhibit high sharpness, while
the damaged images have severe blurring in these areas. Thus,
our framework demonstrates superior prominence in enhancing
overall image quality by achieving conspicuous color fidelity
and sharpness.

3.2 Object Detection Performance

We also assess the integrated system’s utility beyond image
quality enhancement by transitioning to one of the domains
of practical applications, object detection. To validate the per-
formance of our framework in object detection on the restored
images, we first obtained a test dataset that consists of the
ground truth, metalens, and restored images using the entire
PASCAL VOC2007 dataset (n ¼ 4952).62 This dataset com-
prises 4952 images with the information of the positions of ob-
jects and bounding box annotations for instances belonging to
20 different categories. Then, we employ a single shot multibox
detector (SSD)63 pre-trained for the PASCAL VOC2007 to de-
tect bounding boxes of given images. Especially, we introduce
mean average precision (AP) to evaluate object detection results.
AP measures the model’s accuracy in predicting the presence
and correct localization of objects within an image. It provides
a comprehensive assessment of the detection performance
across varying thresholds of precision and recall, making it a
standard benchmark in evaluating object detection algorithms.
Specifically, AP is calculated in multiple scales using IoU
thresholds ranging from 0.5 to 0.95. The terms “AP50” and
“AP75” each represent the results of measurements with the
IoU threshold set to 0.5 and 0.75, respectively.

Figure 7 shows examples of object detection using SSD. The
detector predicts the entire region (red box) as an object because
it cannot identify the detailed features in the metalens images
[Fig. 6(b)]. On the other hand, the detector accurately predicts
the bounding boxes at the desired objects in the restored images
because compared to the original PASCAL VOC2007, the
quality of the restored images is competitive [Figs. 6(a), 6(d)
and 6(c), 6(f)]. Our AP;AP50 on the restored images are
∼34%p and 56%p higher than those on the metalens images.
They are ∼86% and 88% of the AP, AP50 on the ground truth

Fig. 6 (a) and (b) White and black USAF images captured by the metalens imaging system, re-
spectively. (c) and (d) White and black USAF images restored by our framework, respectively. The
image in the red boxes shows the enlarged image in the central region indicated as red box. The
scale bars in the original and enlarged images are 3 and 0.5 mm, respectively, indicating the dis-
tance on the image sensor.
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(Table S2 in the Supplementary Material). The improvement in
AP scores for our framework-restored images compared to the
original metalens images signifies the restoration’s practical im-
plications. Higher AP scores on our framework-restored images
indicate that the model effectively recovers enough detail and
structure from the aberrated metalens images to facilitate accu-
rate object detection, closely approximating the performance on
ground truth images. This enhancement is particularly crucial
for applications in autonomous navigation, surveillance, and
augmented reality, where precise object detection is paramount.

4 Conclusion
In this study, we have demonstrated DNN-based image restoration
framework for large-area mass-produced metalenses. Our ap-
proach effectively mitigates the severe chromatic and angular aber-
rations inherent in large-area broadband metalenses, a challenge
that has long impeded the widespread adoption of the metalenses.
Also, assuming the uniform quality of mass-produced metalenses,
the optimized restoration model can be applied to other metalenses
manufactured at the same process. By employing an adversarial
learning scheme in the Fourier space coupled with positional em-
bedding, we have transcended traditional limitations, enabling the
restoration of high-spatial-frequency information and facilitating
aberration-free, full-color imaging through mass-produced metal-
enses. The profound implications of our findings extend a com-
mercially viable pathway toward the development of ultra-
compact, efficient, and aberration-free imaging systems.
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