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Abstract. Deep learning has transformed computational imaging, but traditional pixel-based representations
limit their ability to capture continuous multiscale object features. Addressing this gap, we introduce a local
conditional neural field (LCNF) framework, which leverages a continuous neural representation to provide
flexible object representations. LCNF’s unique capabilities are demonstrated in solving the highly ill-posed
phase retrieval problem of multiplexed Fourier ptychographic microscopy. Our network, termed neural
phase retrieval (NeuPh), enables continuous-domain resolution-enhanced phase reconstruction, offering
scalability, robustness, accuracy, and generalizability that outperform existing methods. NeuPh integrates
a local conditional neural representation and a coordinate-based training strategy. We show that NeuPh
can accurately reconstruct high-resolution phase images from low-resolution intensity measurements.
Furthermore, NeuPh consistently applies continuous object priors and effectively eliminates various phase
artifacts, demonstrating robustness even when trained on imperfect datasets. Moreover, NeuPh improves
accuracy and generalization compared with existing deep learning models. We further investigate a hybrid
training strategy combining both experimental and simulated datasets, elucidating the impact of domain
shift between experiment and simulation. Our work underscores the potential of the LCNF framework in
solving complex large-scale inverse problems, opening up new possibilities for deep-learning-based imaging
techniques.
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1 Introduction
Deep learning (DL) has revolutionized the field of computa-
tional imaging,1,2 providing powerful solutions to enhance per-
formance and address various challenges.3–11 The effectiveness
of DL in computational imaging lies in its ability to capture the
underlying imaging model and exploit object priors, enabling
robust solutions to ill-posed inverse problems.1 However, the
most widely used reconstruction methods in computational
imaging rely on discrete pixels to represent the objects. For in-
stance, a convolutional neural network (CNN) for computa-
tional imaging is typically trained on a fixed pixel or voxel

grid.1 This representation is inherently limited by the resolution
and size of the grid and does not capture the continuous nature
and multiscale details of the physical objects. Furthermore, the
pixel grid representation poses challenges in scaling to process
and store large-scale multi-dimensional computational imaging
data.5

The neural field (NF) framework12 has recently gained sig-
nificant interest for its ability to represent continuous objects.
Unlike CNN structures, NF uses a coordinate-based neural rep-
resentation, where spatial coordinates are mapped to physical
values using a multi-layer perceptron (MLP). This allows the
NF to encode objects in a continuous representation, decoupled
from a discrete grid. It enables on-demand synthesis of any part
of the object by simply querying relevant coordinates across ar-
bitrary dimensions and resolutions. Several NF-based DL tech-
niques have been recently introduced in computational imaging
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for solving inverse problems.5,13–19 However, these methods are
limited by the high computational cost and limited generaliza-
tion ability. They either require retraining a new NF network for
each object5,13–15,17–19 or suffer from the limited representation
power of the latent space learned only on the global scale,16 re-
stricting their ability to generalize to diverse objects.

To overcome these limitations, we propose a novel local con-
ditional neural field (LCNF) framework for solving imaging
inverse problems. We demonstrate LCNF’s unique capabilities
for solving the highly ill-posed phase retrieval problem in
multiplexed Fourier ptychographic microscopy (FPM).20,21 We
term this LCNF-based phase retrieval method as neural phase
retrieval, or NeuPh [Fig. 1(a)]. NeuPh utilizes a CNN-based
encoder to learn measurement-specific information from a set
of low-resolution measurements and encode them into a com-
pact latent-space representation. This CNN-based encoder
effectively extracts the diffraction information that spreads over
an area in the measurement by utilizing its extended receptive
field, condensing them into latent vectors. Subsequently, an
MLP-based decoder is employed to reconstruct the phase values
of the object at specific locations based on the corresponding
latent information. This decoder is conditioned on a learned
latent vector that incorporates information across a region of
the input images. This conditioning enables adaptation to differ-
ent objects since each set of measurements is projected onto

a distinct latent space representation by the encoder. In addition,
a crucial aspect of FPM phase retrieval is achieving “super-
resolution” reconstruction, surpassing the diffraction limit of
the input low-resolution measurements.22 To reach this goal,
NeuPh’s decoder further utilizes “super-resolved” latent infor-
mation during training. By combining these components, NeuPh
achieves scalable and generalizable DL-based continuous-
domain high-resolution image reconstruction based on low-
resolution measurements that is applicable to arbitrary objects
with varying spatial scales and resolutions.

Our results highlight NeuPh’s ability to apply continuous
and smooth priors to the reconstruction and showcase more
accurate reconstruction results compared to existing models.
Using experimental datasets captured on Hela cells, we show
that NeuPh can accurately reconstruct complex intricate subcel-
lular structures. In addition, we highlight NeuPh’s robustness
when subjected to imperfect training datasets. Notably, NeuPh
effectively eliminates common artifacts encountered in traditional
model-based algorithms, such as residual phase unwrapping
errors, noise, and background artifacts. Through comparison
with a fully CNN-based model, we highlight the benefits of
employing an MLP-based decoder and pixel-based training
strategy in NeuPh over convolutional layer-based decoding and
patch-wise training strategy in CNNs. In addition, we demon-
strate the superior performance of NeuPh in multiplexed FPM

(a)

(b)

(c)

Fig. 1 Conceptual illustration of the NeuPh framework. (a) NeuPh employs a CNN-based encoder
to learn measurement-specific information and encode them into a latent-space representation.
The MLP decoder reconstructs the phase values at specific locations with an increased spatial
resolution by synthesizing local conditional information from the corresponding latent vectors.
(b) FPM experimental setup and illumination patterns for acquiring multiplexed BF and DF mea-
surements. (c) Example low-resolution BFmeasurement and high-resolution phase reconstruction
from the model-based FPM algorithm and NeuPh. NeuPh learns a continuous-domain represen-
tation and can infer phase maps on an arbitrary pixel grid (illustration with 6×, 21×, 49.8× pixel
density compared with the raw measurement).
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reconstruction compared to state-of-the-art neural networks
used in FPM phase retrieval problems.

Furthermore, we showcase NeuPh’s strong generalization
capabilities, which cannot be achieved by existing NF networks.
First, we demonstrate that NeuPh can consistently perform high-
resolution reconstruction even when trained with very limited
data or under different experimental conditions. Moreover,
we demonstrate that NeuPh can be trained using exclusively
physics-model-simulated datasets composed of natural images.
We show that this physics simulator-trained NeuPh generalizes
well to experimental biological samples. We further investigate
a hybrid training strategy combining both experimental and
simulated datasets. By collectively analyzing the results from
the pure-experimental-based, hybrid, and pure-simulation-based
training methods, we elucidate the effects of domain shift and
underscore the importance of aligning the data distribution be-
tween the simulation and experiment to ensure effective network
training with simulation. Finally, we show that all NeuPh net-
works, regardless of the training dataset, can reliably reconstruct
high-resolution images across a wide field of view (FOV). The
results are robust to unknown spatially varying aberrations,
benefiting from the smooth object priors provided by NeuPh.

In summary, we introduce a novel LCNF framework as a
scalable, robust, accurate, and generalizable approach for
solving highly ill-posed large-scale imaging inverse problems.
By leveraging a continuous neural representation, NeuPh
effectively captures multiscale object information from low-
resolution measurements and provides robust resolution en-
hancement in the reconstruction. Furthermore, our LCNF
framework exhibits superior reconstruction performance com-
pared to existing models, highlighting the advantages of the
MLP-based decoder and coordinate-based training strategy.
The framework’s ability to generalize with very limited training
data and its capacity to leverage physics-based simulation fur-
ther enhance its potential for advancing DL-based computa-
tional imaging techniques.

2 Methods

2.1 Experimental Setup and Data Preparation

We investigate different datasets for training NeuPh using both
experimental and simulated datasets. The experimental data are
taken on Hela cells fixed in ethanol [Hela(E)] or formalin
[Hela(F)] from Ref. 23. Due to different fixation procedures,
the Hela cells show different morphological features.

To briefly describe the experiment, our multiplexed measure-
ments use five LED patterns (central wavelength of 630 nm),
including two brightfield (BF) semi-circle and three darkfield
(DF) 120 deg arc patterns [Fig. 1(b)], to efficiently encode
high-resolution phase information across a wide FOV. Matching
sequential FPM datasets are also captured by single-LED illu-
mination with 185 LEDs. In both schemes, the maximum illu-
mination numerical aperture (NA) is 0.41. Images are collected
using a 4×, 0.1 NA objective (Nikon CFI Plan Achromat) and
an sCMOS camera (PCO.edge 5.5) with 2560 pixel × 2160 pixel
and a 6.5 μm pixel size. We collect 22 groups of Hela(E) mea-
surements and 20 groups of Hela(F) measurements. The ground-
truth images are computed using the model-based algorithm21

on the sequential FPM measurements to process the central
250 pixel × 250 pixel regions and reconstruct the high-resolution
phase images yielding 1500 pixel × 1500 pixel. Accordingly,
the full-pitch resolution24 is theoretically improved from 6.3

(corresponding to 0.1 NA) to 1.235 μm (corresponding to
0.51 NA).

For the simulated dataset, we collect images from DIV2K
dataset.25 The whole simulated dataset consists of 900 cropped
high-resolution natural images (600 pixel × 600 pixel) and cor-
responding simulated low-resolution multiplexed illuminated
intensity images (100 pixel × 100 pixel). The forward model
for the simulation, model-based reconstruction algorithms, data
acquisition, and preparation are detailed in the Supplementary
Material.

2.2 NeuPh Framework

NeuPh’s network structure is shown in Fig. 1(a). The encoder
Eθe takes six low-resolution images as input and projects the
learned information into a latent space. The input consists of
two BF and three DF images, along with a low-resolution phase
estimate using the two BF images and the differential phase
contrast (DPC) method20 (see details in the Supplementary
Material). To handle the distinct features of BF, DF, and
DPC images, three separate encoders fe1; e2; e3g are employed
to extract the latent information. Each encoder utilizes convo-
lution layers and residual blocks to extract spatial features.
The lateral dimensions of the feature maps match those of
the input image, allowing for direct coordinate-based latent in-
formation retrieval during decoding. The features learned from
the three encoders are concatenated to form the final latent space
representation Φ ∈ RH×W×D, where H and W are the numbers
of pixels in the lateral dimensions and D is the total number of
concatenated feature maps in the latent space.

To enable high-resolution reconstruction independent of a
fixed grid, a coordinate-based decoder is employed using an
MLP fθ. For local conditioning, a latent vector ϕ ∈ R1×1×D

is concatenated with the corresponding coordinate c before
being input to fθ. This ensures that the learned mapping by
the MLP is informed by the input, allowing for model generali-
zation. The decoder’s output is a predicted phase value at
location c. NeuPh is trained end-to-end by minimizing a loss
function L½fθðc;ϕÞ;ψðcÞ� that measures the difference between
the predicted [fθðc;ϕÞ] and the ground-truth phase ψðcÞ at c.
To accelerate the training, we randomly select N coordinates
from small training batches at each step. Correspondingly, we
perform the minimization:

min
θe;θ

1

N

XN

n¼1

kfθðcn;ϕnÞ − ψðcnÞk1; (1)

where θe and θ are the weights of the encoder and decoder, re-
spectively, cn is the n’th selected coordinate, ϕn ¼ Eθeðm; cnÞ is
the latent vector encoded from input m for the queried coordi-
nate cn, ψðcnÞ is the ground-truth phase value at position cn,
and k · k1 denotes the L1 norm. The ground-truth images are
obtained from the paired sequential FPM measurements and
reconstructed by a model-based algorithm (see Supplementary
Material).

A key aspect of FPM reconstruction is “super resolution.”
To facilitate learning high-resolution information beyond the
low-resolution H ×W grid, NeuPh is also trained on “off-
the-grid” high-resolution data queried from a denser grid
H0 ×W0. However, the corresponding off-the-grid latent vector
is not readily available from the encoded latent space. To solve
this issue, the nearest latent vector is used for the decoder.
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In addition, to inform the decoder about the relative position of
the queried off-the-grid location with respect to the nearest
latent vector location, the implementation of Eq. (1) utilizes
their relative coordinate Δc instead of the absolute coordinate c,
following the LIIF method.26 Furthermore, to utilize the infor-
mation provided by the neighboring latent vectors and improve
the continuity of the reconstruction, enhancement techniques
including feature unfolding, local ensemble, and cell decoding26

are applied.
After training, NeuPh allows for querying arbitrary points on

the object by inputting the corresponding measurements and the
queried coordinates. This eliminates the need for a fixed input
grid in traditional model-based and CNN methods. The high-
resolution phase reconstruction can be achieved on any desired
grid. This feature is demonstrated in Fig. 1(c), where reconstruc-
tions are queried at three distinct pixel densities, showcasing
smooth transitions across these diverse spatial scales without any
artifacts. More details about NeuPh’s structure, reconstruction
enhancement techniques, and ablation studies of its architecture
can be found in Secs. 2, 3, 6, Fig. S6, and Table S2 in the
Supplementary Material.

2.3 Training Strategies

To comprehensively evaluate NeuPh’s generalization capability
and investigate the impact of domain shift between the simu-
lated and experimental datasets on reconstruction result, in total,
we explored four different training strategies, including training
with the full experimental dataset (NeuPhEð18Þ, NeuPhFð16Þ),
training with a single pair of experimental datasets (NeuPhEð1Þ,
NeuPhFð1Þ), training with a purely simulated natural image data-
set (NeuPhSimð18Þ, NeuPhSimð16Þ, NeuPhSim), and training with
mixed experimental and simulated images (NeuPhE∶Simð9∶9Þ,
NeuPhE∶Simð1∶17Þ, NeuPhF∶Simð8∶8Þ, and NeuPhF∶Simð1∶15Þ).

For all four scenarios, the training typically converges at 500
epochs. Training the network with a single pair of experimental
datasets takes ∼3 h, while training with the full experimental
dataset, a blend of an experimental and simulated datasets, or
the simulated dataset takes ∼24 to 48 h to converge on an
NVIDIA Tesla P100 GPU. More details about the implementa-
tion of network training and datasets used for training different
networks can be found in the Sec. 5 in the Supplementary
Material.

2.4 Network Inference

To perform inference, we input the preprocessed measure-
ments of the desired FOV and configure the pixel resolution
for the reconstruction. During the inference, NeuPh predicts
the phase value for each queried position. In our main results,
we perform inference with a 6× denser grid compared to the
raw measurement. We first divide the measurement into small
patches with 250 pixel × 250 pixel. Next, we reconstruct each
patch individually, producing high-resolution images with
1500 pixel × 1500 pixel. This process takes ∼25 s, resulting
in an average rate of ∼1 × 10−5 s∕pixel on an NVIDIA
Quadro RTX8000 GPU. In comparison, the model-based FPM
reconstruction with sequential illumination takes around 8 min.
In addition, the model-based multiplexed FPM reconstruction
algorithm fails to generate high-resolution phase images from
multiplexed illumination with only five intensity images.23 To
create the final wide-FOV reconstruction, we employed alpha
blending23 to stitch together the individual reconstructions,

forming a high-resolution image with a diameter of 12,960
pixel. It is worth noting that NeuPh is inherently capable of
directly inferring the entire FOV image without any stitching.
However, due to the GPU memory (48 GB) limit on our
GPU, we apply this patch-wise inference method.

3 Results

3.1 Continuous-Domain Phase Reconstruction by
NeuPh

We first demonstrate NeuPh’s capability on experimentally im-
aged Hela cells fixed with ethanol or formalin. Here, we show
results using the networks that are trained separately for these
two data types (NeuPhEð18Þ and NeuPhFð16Þ) to showcase
NeuPh’s best performance since different cell fixations induce
distinctive morphological features within single cells and thus
a domain shift in the data (which we explore in more detail in
Sec. 3.5). In Fig. 1(c), we present the raw low-resolution BF
intensity image, the model-based FPM reconstruction, and the
NeuPh reconstruction of ethanol-fixed Hela cells. In Figs. 2(a)
and 2(b), we show additional reconstruction results for Hela
cells fixed with ethanol or formalin, respectively, with a few
zoomed-in regions. It is evident that NeuPh successfully recon-
structs high-resolution phase images from low-resolution mea-
surements, accurately recovering intricate subcellular structures
and achieving much better results compared with the linear DPC
estimate.

To showcase NeuPh’s continuous object representation
capability, we conduct inference on arbitrary coordinates. As
shown in Fig. 1(c) and Fig. S5 in the Supplementary Material,
we perform queries for subarea 1 at pixel densities of 6×, 21×,
49.8×, 73.5×, and 105.9× compared to the input low-resolution
intensity image. NeuPh successfully reconstructs the phase
at these density grids. For comparison, we also include the
model-based reconstruction of the same area. Due to predefined
grids, the reconstruction exhibits discrete grid artifacts in the
enlarged image. Furthermore, it may suffer from phase unwrap-
ping artifacts (see Sec. 3.2 for more details). In contrast, NeuPh
provides continuous object reconstruction without any discrete
or other phase artifacts.

3.2 Robustness to Phase Artifacts

Next, we highlight NeuPh’s robustness to various phase artifacts
that arise from practical FPM experiments, including measure-
ment noise, phase unwrapping errors, and artifacts resulting
from an imperfect imaging model. As shown in Figs. 1(c) and
3(a), model-based FPM reconstruction may exhibit discontinu-
ous artifacts due to imperfect phase unwrapping when dealing
with samples with a phase range exceeding 2π. Moreover,
Fig. 3(a) illustrates rippling artifacts in the background region
of the model-based reconstruction, possibly resulting from the
model-mismatch in the reconstruction.27

In contrast, NeuPh (NeuPhEð18Þ) effectively eliminates these
artifacts and achieves accurate, smooth, and continuous recon-
structions without any explicit regularization term. We quanti-
tatively evaluate the artifact-suppression capability of NeuPh by
measuring the residual random fluctuations in the background
regions.24 Our analysis shows that NeuPh can reduce the back-
ground artifacts by several folds compared with the model-
based FPM reconstruction, as shown in Fig. 3(a). Additional
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results on phase artifact removal using NeuPh are shown in
Fig. S7(a) in the Supplementary Material.

This result is particularly intriguing because the NeuPh
network was trained using this type of ‘noisy’ images from real
experiments, and the network shows remarkable robustness in
both the training and testing stages. We attribute this robustness
to the continuity of the learned latent space and the continuous
representation imposed by the coordinate-based decoder, both
of which implicitly regularize the ill-posed inverse problem.
First, NeuPh encodes the input images into a continuous latent
space representation, effectively filtering out noisy information.
Second, NeuPh decodes the phase value by a coordinate-based
network, which implicitly learns a continuous neural represen-
tation of the object.

3.3 Superior Phase Retrieval Performance Compared to
the CNN-Based Model

We conduct a thorough ablation study to illustrate NeuPh’s
superior performance compared to CNN-based models. The
detailed procedure of the ablation study is provided in the

Supplementary Material, and the reconstruction results of etha-
nol-fixed Hela cells are shown in Fig. 3(b). Specific subareas of
interest are zoomed in, with subcellular details highlighted by
red circles. In addition, spatial spectra are included at the bottom
left of each figure, along with quantitative metrics, including the
mean square error (MSE) and frequency measurement (FM)
metric noted at the bottom. The FM quantifies the recovery of
frequency components28,29—a metric for measuring the resolv-
ing power of the reconstruction algorithm—where higher FM
values represent the recovery of more frequency components.
We also compute the structural similarity index measure (SSIM)
and peak signal-to-noise ratio (PSNR), as detailed in Table S3 in
the Supplementary Material. Additional comparisons are shown
in Figs. S7(b) and S10 in the Supplementary Material. The met-
rics for an additional 100 testing image patches outside the train-
ing FOV region are provided in Table S4 in the Supplementary
Material. Our results show that the CNN-based network produ-
ces more reconstruction artifacts and fails to recover as many
high-frequency components as NeuPh, as evident in the red
circled regions and the reconstruction spectra in Fig. 3(b), as
well as the FM scores.
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3.4 Superior Phase Retrieval Performance Compared to
Existing Neural Networks

To further evaluate our network’s phase retrieval performance,
we compared NeuPh with existing state-of-the-art networks
used in FPM reconstructions. Specifically, we compared our
network’s performance with phase retrieval results provided
by a GAN-based network23 and a traditional NF network.19

We trained the GAN-based network using the same single-
paired experimental dataset as the CNN-based network and
NeuPh in Sec. 3.3. The training took around 5 h with 500 epochs
using an NVIDIA Quadro RTX 8000 GPU, and the inference
for a single image took around 1 min. For the traditional NF
method, we directly used the five captured raw intensity images
since it is a self-supervised learning method and does not need
paired images for training. The training (and reconstruction) for
a single image took around 30 min using an NVIDIA Quadro
RTX 8000 GPU. The reconstruction results for the GAN net-
work and traditional NF network on ethanol-fixed Hela cells
are shown in Fig. 3(b) GANE and NFE, respectively. As shown
in the figure, both the GAN-based network and traditional
NF methods failed to recover high-resolution phase images,
whereas our NeuPh successfully recovered the high-resolution
phase image. Additional reconstructions for formalin-fixed Hela
cells are shown in Fig. S7(b) in the Supplementary Material.
Since both the GAN-based network and the traditional NF
network failed to reconstruct high-resolution images, and the
traditional NF network lacks generalization ability and must
be retrained for different objects, we did not test them on the
additional 100 test samples.

The failure of previous state-of-the-art networks may arise
from several factors. For the GAN-based network, changing
the training dataset from hundreds of paired images to a single
paired image, similar to our NeuPh training setup, made training
the GAN-based network more challenging. As for the traditional
NF network, we address the multiplex-FPM reconstruction
problem, reducing the number of captured images from hun-
dreds to only five, which significantly increases the ill-posed-
ness of the problem compared to the one solved in Ref. 19.

3.5 Strong Generalization Capability of NeuPh

A notable advantage of our LCNF framework is its superior gen-
eralization capability, overcoming the limitations of existing NF
frameworks5 that require retraining for different objects. To thor-
oughly evaluate NeuPh’s generalizability, we perform phase
reconstruction for ethanol-fixed Hela cells with different data-
set-trained networks. The reconstruction results are presented in
Fig. 4 with the corresponding MSE and FM scores provided in
the figures. We also compute the PSNR and SSIM scores in
Table S5 in the Supplementary Material. In addition, to gain in-
sights into NeuPh’s robustness against realistic spatially varying
aberrations in our experiment, we evaluate the reconstructions
on an additional 100 image patches outside the training region,
whose performance metrics are provided in Table S6 in the
Supplementary Material. In Fig. S8 and Tables S5 and S6 in
the Supplementary Material, we repeat the same evaluation
on formalin-fixed Hela cells.

Our NeuPh successfully reconstructs high-resolution phase
images regardless of the training dataset, showcasing its strong
generalization. The MSE generally increases, while the PSNR,
SSIM, and FM decrease when training NeuPh with a very lim-
ited dataset or a different type of data compared to the network
trained with the same cell type and the full experimental dataset.
This indicates that the network’s generalization performance
generally degrades when it is trained on a smaller training data-
set or the distribution of the testing data is shifted from that of
the training data, which is expected. However, the changes in
the metric scores are small and hardly noticeable in the visual-
izations in Fig. 4, even for the network trained with a single
paired training dataset. This highlights NeuPh’s robust generali-
zation. When NeuPh is trained with ethanol-fixed Hela cells
(NeuPhEð18Þ) and applied to formalin-fixed Hela cells, the FM is
slightly higher than those of the network trained with formalin-
fixed Hela cells (NeuPhFð16Þ), as indicated in Fig. S8 and Tables
S5 and S6 in the Supplementary Material. We attribute this
unusual result to the fact that ethanol-fixed Hela cells contain
more structural details and provide a broader spectrum com-
pared to formalin-fixed Hela cells [see the spectra shown in

Fig. 4 Strong generalization capability of NeuPh. Reconstructions of ethanol-fixed Hela cells with
different dataset-trained networks.
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Fig. 3(b) and Fig. S7(b) in the Supplementary Material]. There-
fore, NeuPhEð18Þ may reconstruct more frequency components.

Furthermore, we demonstrate NeuPh’s robust generalization
by employing pure simulator-based training (NeuPhSimð18Þ,
NeuPhSimð16Þ) to reconstruct the experimental Hela cell dataset,
showcasing the straightforward application of simulator-based
training for generating subcellular phase images from low-reso-
lution intensity images. Our approach overcomes the limitations
of existing networks when obtaining paired experimental training
data is challenging, as they either require retraining5,13–15,17 or are
hindered by the limitations of generative adversarial networks
(GANs).23 Although the quantitative results indicate that the
simulator-trained NeuPh performs slightly worse than the exper-
imental-data-trained networks, this difference is expected due to
the significantly different image features between the natural
images used in training and the cells in the experiment.

To better understand the influence of domain shift
between simulation and experiment, Fig. 4 compares inference
results in NeuPhEð18Þ, NeuPhE∶Simð9∶9Þ, NeuPhE∶Simð1∶17Þ, and
NeuPhSimð18Þ which are trained by different blends of experi-
mental and simulated datasets. From the reconstructed images
and the metrics in Table S5 in the Supplementary Material, it is
evident that incorporating experimental datasets consistently
leads to better performance compared to networks trained solely
on simulated datasets. Generally speaking, an increase in the
proportion of the simulated data in the training set results in
slightly degraded reconstruction performance on experimental
measurements, indicating the adverse impact of the domain
shifts between the simulation and experimental datasets.
However, this performance degradation is minimal by imple-
menting our distribution matching procedure, as detailed in the
Supplementary Material and Fig. S3 in the Supplementary
Material. In addition, we show that the NeuPh trained solely
on the experimentally captured biological images can success-
fully reconstruct simulated measurements from natural images
in Fig. S9 in the Supplementary Material.

We attribute NeuPh’s accurate reconstruction and strong gen-
eralization capability to our local conditional neural representa-
tion and the coordinate-based training strategy. Unlike existing
NF frameworks, NeuPh employs a CNN-based encoder to en-
code measurements and then provide object information to the
decoder, enabling adaptability to different objects’ reconstruction.
In addition, the coordinate-based training strategy treats pixels as
training pairs [see Eq. (1)], offering two potential advantages.
First, by considering coordinates, the training data effectively ex-
pand from a single paired image to a diverse set of pixels. This
allows NeuPh to learn from a vast and varied dataset, contributing
to its superior generalization capabilities. Second, the coordinate-
based training strategy helps NeuPh mitigate overfitting to spe-
cific image features in the training data. As a result, NeuPh can
achieve high-quality reconstructions even when trained on a dif-
ferent cell type or completely different objects. These attributes
not only reduce the necessity for a large number of training sam-
ples but also expedite the entire experimental process. This is
particularly beneficial in challenging scenarios where collecting
experimental training data is labor-intensive and expensive.

3.6 Robust Wide-FOV High-Resolution Phase
Reconstruction

Finally, we employ NeuPh for wide-FOV high-resolution recon-
structions, as shown in Fig. 5. The network NeuPhEð18Þ trained

on experimental data utilizes measurements solely from the cen-
tral 250 pixel × 250 pixel region, as indicated by the dashed
black square in Fig. 5(a). The simulator-trained network
NeuPhSim assumes an ideal imaging system without any aber-
rations. Subsequently, we perform phase reconstruction across a
substantially larger FOV, covering a circular region with a 2160-
pixel diameter in the raw measurements (3.51 mm FOV). The
resulting wide-FOV reconstructions (12,960 pixel in diameter)
are shown in Figs. 5(b) and 5(c) for NeuPhEð18Þ and NeuPhSim,
respectively. Furthermore, Figs. 5(d)–5(g) highlight specific
subareas ranging from the central to the periphery of the FOV.

Overall, the NeuPh networks achieve high-quality recon-
structions, with intricate subcellular details distinctly visible
and minimal artifacts. However, some distortions are noticeable
at the FOV’s extreme periphery, as seen in the subarea (iv).
These distortions can be attributed to the unaddressed spatially
varying aberrations in our setup, which become more pro-
nounced at the periphery of the FOV.30 This model mismatch
leads to a distributional shift between the training and testing
datasets, worsening as the aberrations grow more severe.
Addressing this limitation will require novel training strategies
that integrate spatially variant imaging models.

Furthermore, we present additional wide-FOV reconstruc-
tions in Figs. S11–S13 in the Supplementary Material for exper-
imental Hela cells using NeuPh networks trained with different
datasets based on experimental or simulated datasets. The re-
sults further underscore NeuPh’s reliability in achieving wide-
FOV high-resolution phase reconstructions, regardless of the
training dataset employed. Notably, our framework demon-
strates excellent performance even when trained with very lim-
ited data, including a single paired image at the extreme case or
when utilizing simulated training data.

4 Discussion and Conclusion
We have introduced LCNF, a scalable and generalizable DL
framework for solving imaging inverse problems. Unlike tradi-
tional model-based or CNN frameworks, LCNF employs a con-
tinuous neural representation, facilitating flexible reconstruction
of multiscale information. A novel local conditioning technique
combined with a coordinate-based training strategy is incorpo-
rated, improving its accuracy compared with existing state-of-
the-art deep learning models and significantly enhancing its
generalization capability compared to existing NF frameworks.

By applying LCNF to solve the multiplexed FPM phase
retrieval problem, we demonstrate a novel deep neural network,
NeuPh, for continuous-domain large-scale super-resolution
phase reconstruction from a sparse set of low-resolution inten-
sity measurements. Notably, NeuPh exhibits robustness against
noisy training data. Reconstructions by NeuPh are free from
typical artifacts, such as residual phase unwrapping errors,
noise, and background ripples, which contaminate the training
data obtained by traditional FPM reconstructions. In addition,
we observe the superior reconstruction performance of NeuPh,
which recovers more frequency components with fewer artifacts
compared to the CNN-based model and shows better
reconstruction performance on multiplex FPM than existing
state-of-the-art networks. This observation suggests that NeuPh
has the potential to mitigate the inherent spectral bias associated
with CNN-based models.

Furthermore, NeuPh demonstrates remarkable generalization
across different object types and experimental conditions, sur-
passing existing NF frameworks. We demonstrate that NeuPh
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trained on various datasets including purely simulated ones can
reliably generalize to biological samples and reconstruct subcel-
lular details with super-resolution without requiring network re-
training or transfer learning. This highlights an effective strategy
to circumvent the collection of experimental training data alto-
gether, leveraging the knowledge of imaging physics to simulate
training datasets. In addition, we emphasize the importance
of aligning dataset distributions between the experimental and
simulated datasets to optimize reconstruction results.

As indicated by our wide-FOV reconstruction results in
Sec. 3.6, the unknown spatially varying aberrations in the
imaging system present a main limitation that needs to be
addressed to further improve NeuPh’s performance. Both ad-
vanced physical modeling methods7,8 and novel network
designs8,31 have been effective in addressing this issue in fluo-
rescence microscopy. Adapting these ideas to phase microscopy
offers a promising direction for future research. In addition, NF
has demonstrated its unique capability in effectively modeling
multi-dimensional spatiotemporal information in several dynamic
imaging applications.14,17,18 By integrating these spatiotemporal
NF frameworks with our local conditioning technique, one may
achieve broad generalization and significantly reduce the com-
putational cost in dynamic image reconstruction, making it
another promising direction for future advancements.

In conclusion, we present LCNF as a scalable, robust, accu-
rate, and generalizable DL-based continuous-domain image
reconstruction framework. While our main focus in this work
centers on addressing large-scale, super-resolution phase retrieval
based on the multiplexed FPM technique, we envision that the
LCNF framework holds potential for broader applications. It
can be adapted to various computational imaging techniques
for solving the underlying ill-posed inverse problems in areas,
such as holographic imaging, imaging through complex media,
and light-field microscopy.
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Fig. 5 Wide-FOV high-resolution phase reconstruction by NeuPh. (a) BF image captured over
a 2160-pixel diameter (3.51 mm) FOV. Wide-FOV reconstruction by training NeuPh with the
(b) experimental dataset (NeuPhEð18Þ) and (c) simulated dataset (NeuPhSim). (d)–(g) Selected
subareas extracted from the central to the edge of the FOV, identified as (i)–(iv), and enclosed
within different colored boxes. (d) BF image. (e) Model-based reconstruction. (f) NeuPhEð18Þ
reconstruction. The experimental dataset used for training NeuPhEð18Þ is obtained from the central
region, indicated by the dashed black square. (g) NeuPhSim reconstruction.
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