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Abstract. Neural networks have provided faster and more straightforward solutions for laser modulation.
However, their effectiveness when facing diverse structured lights and various output resolutions
remains vulnerable because of the specialized end-to-end training and static model. Here, we propose a
redefinable neural network (RediNet), realizing customized modulation on diverse structured light arrays
through a single general approach. The network input format features a redefinable dimension designation,
which ensures RediNet wide applicability and removes the burden of processing pixel-wise light distributions.
The prowess of originally generating arbitrary-resolution holograms with a fixed network is first demonstrated.
The versatility is showcased in the generation of 2D/3D foci arrays, Bessel and Airy beam arrays, (perfect)
vortex beam arrays, and even snowflake-intensity arrays with arbitrarily built phase functions. A standout
application is producing multichannel compound vortex beams, where RediNet empowers a spatial light
modulator (SLM) to offer comprehensive multiplexing functionalities for free-space optical communication.
Moreover, RediNet has the hitherto highest efficiency, only consuming 12 ms (faster than the mainstream
SLM framerate of 60 Hz) for a 10002-resolution holograph, which is critical in real-time required scenarios.
Considering the fine resolution, high speed, and unprecedented universality, RediNet can serve extensive
applications, such as next-generation optical communication, parallel laser direct writing, and optical traps.
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1 Introduction
Structured light,1 as a huge category of inhomogeneous electro-
magnetic waves with exceptional physical interpretation and
tailored field distribution, has profoundly advanced the frontiers
of optical technology and fueled applications from imaging,2,3

microscopy,4–6 communication,7–9 quantum information10 to
nanomanufacturing.11 Concurrently, beam parallelization
technology11,12 brings the possibility of tunably splitting lasers
into multiple same or distinct subbeams via programmable
devices, such as the spatial light modulator (SLM).13,14 The
merging of these two fundamental technologies holds

tremendous potential, enabling the generation of parallel struc-
tured light arrays with customizable positions, energy propor-
tions, and varied optical properties. The positive outlook of
this synergy lies in the fact that the flexible structured light ar-
rays pave the way for the pursuit of massive information
throughput, higher multiplexing dimension in communication,
and multivoxel processing ability with a single exposure.

In the quest to engineer fully controllable structured light ar-
rays without compromising the intrinsic properties of individual
beams, phase modulation is widely adopted, whose competence
depends on the design of the phase hologram. Researchers have
devised numerous phase hologram generating strategies.
Starting with the generation of a simple three-dimensional
(3D) focus array, there are the weighted Gerchberg–Saxton,15

the 3D iterative Fourier transform (3DIFTA),16 and the spherical
aberration-compensated automatic differentiation (SACAD)17
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algorithms, achieving excellent performance that are close to
theoretical optima. For nondiffracting beam arrays, the periodic
arrangement of specific phase patterns or nanostructures has
emerged as a straightforward method.18,19 Vortex beam arrays
with varied orbital angular momentum (OAMs) and spatial
gconfigurations can be produced through encoded holo-
graphic gratings20 or by subtly overlaying multiple spiral phase
patterns.21 These methods commonly take the pixel-wise or
beam-wise distribution as the target and contain a flip-flop
iterative process to minimize the error. Nevertheless, this kind
of classic scheme has difficulty in correct convergence facing
the 3D target or complex amplitude target that is introduced
by structured light distribution. Burdensome loss function setup
and priori regularization undermine the simplicity as well.
Moreover, the speed of closed-loop iterative optimization of
these algorithms presents a bottleneck for real-time deployment
and a long-lasting challenge that remains to be addressed.

On that account, neural networks have drawn massive atten-
tion in pixel-wise image tasks due to the prosperity of hardware
and algorithms in recent years.22,23 With ingenious architectures
filled with enormous quantity of parameters, neural networks
provide rapid solutions for planar and volumetric phase
retrieval,24,25 lensless imaging,26 and atmospheric turbulence
adaptive correction.27 Their remarkable efficiency and accuracy
originate from their direct end-to-end training and one-way
computation flow. However, the reliance on data-based training
and application-specific network topology are also what limit its
universality. A neural network is likely to collapse when con-
fronted with obvious variations in the input, output, or even

divergent resolution. A single neural network that can undertake
the modulation tasks in diversiform structured light array appli-
cations is still pending.

To this end, in this work, we propose a novel and efficient
redefinable neural network architecture, termed RediNet, which
can transcend the dilemmas of established neural network mod-
els and fulfill the possibility of fulfilling speed, flexibility, and
resolution requirements simultaneously. Facing different target
structured light array species [Fig. 1(a)], our strategy seeks and
exploits the sparsity in the arrayed light field, unifying numer-
ous optical properties in a general framework rather than train-
ing a dedicated network for every kind of target [Fig. 1(b)]. We
also eschew the traditional method of targeting the pixelated
complex amplitude. Instead, using the analytic characteristic
phase functions (CPFs), a parameter space [Fig. 1(c)] is built
whose dimension designations can be flexibly redefined. A con-
cise neural network is trained as an inverse problem solver for
the primitive function taking the preset parameter space as the
Fourier series coefficients. Next, mapping the CPFs into the
primitive function, a computer-generated holograph (CGH) for
arbitrary structured light parallelization is generated, covering
the abilities of multiple neural networks and other algorithms
[Fig. 1(d)].

We demonstrate that the parallel array containing almost all
kinds of structure lights that can be generated using a phase
CGH have been realized, without any iterative optimization
or retraining of the network. Specifically, we construct a sim-
ple experimental setup, generating diverse CGHs to produce
2D and 3D focal arrays, Bessel and Airy beam arrays,
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Fig. 1 The concept of RediNet. (a) Three kinds of target structured light arrays, including 3D focus
array, Airy beam array, and perfect vortex array. (b) Schematic of conventional neural network with
pixel-wise input and output. Three independent neural networks serve three kinds of target dis-
tributions. The input data structures and training data differ from each other. (c) Schematic of
RediNet. Through parameter unifying, multiple structured lights can be defined in a 3D parameter
space, which carries the abstract configuration of the target distribution. The output of the network
is the 3D primitive function. With CPF mapping, the 3D primitive function can be transformed into
2D CGHs for different purposes. (d) Corresponding CGHs for the target distributions in (b).
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Laguerre–Gaussian (LG) mode beam arrays, vortex and per-
fect vortex beam arrays, and snowflake-intensity arrays with
arbitrarily built phase functions. Because of a lightweight
model (about 22.4 million network parameters), the neural net-
work finishes a prediction in 2.9 ms, while also allowing for
post hoc determination of CGH resolution (taking a total of
6.7 ms for 5002-resolution and 12 ms for 10002-resolution
CGHs). We believe that the fine resolution, high speed, and
unprecedented universality of RediNet offer a practical solu-
tion for the designing of structured light arrays in next-gener-
ation optical communication, parallel laser direct writing,
optical traps, and so on.

2 Method

2.1 Architecture of RediNet

The structure of RediNet is shown in Fig. 2. The typical neural
networks employed in phase modulation regard pixel-wise
light distribution and the corresponding pixel-wise CGH as
the input and output. Although effective and straightforward,
this direct approach often encourages an oversized and over-
specialized network.24,25 To circumvent this issue, we propose
an indirect three-step procedure to isolate the variation of
structured light species and resolution. The neural network

Fig. 2 The architecture of RediNet and CGH generating workflow. (a) Pre-processing. The table
contains examples of CPFs αðx ; yÞ of four different structured light species. Two rows in the table
correspond to two parameters of structured light properties, and also correspond to the coordi-
nates in parameter space. The CPF species can be further extended, and the values of the param-
eter can be expanded. (b) The neural network in RediNet. A parameter space P in the left box is
the input, carrying the configuration of the target structured light array. The neural network in
RediNet possesses an architecture of encoder, decoder, and skip connection. The trained net-
work’s output is primitive function S, displayed in the right box. (c) Post-processing by mapping
the 3D primitive function to a 2D phase CGH. For determining the phase value of one pixel at
ðx0; y0Þ, the first step is positioning, putting ðx0; y0Þ into every CPF and obtain αi ðx0; y0Þ. The
second step is evaluation, finding the value of the primitive function at the coordinates of
αi ðx0; y0Þ. All the pixels on a CGH share the same mapping procedure.
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serves as the computation kernel [Fig. 2(b)], while the
parameter space acquisition [Fig. 2(a)] and primitive functions
mapping [Fig. 2(c)] are externalized as pre- and postpro-
cessing.

In first step, the preprocessing is about determining the CPFs
by the properties of the structured light and constructing a
uniform parameter space. CPF is essentially an exact phase dis-
tribution for producing a structured light beam with a single
optical property, as listed in Fig. 2(a). Most structured lights
have their corresponding analytic CPFs, which are linear with
the modulation parameters. In the examples shown in Fig. 2(a),
the CPF for the x direction shifting Δx is the blazed grating
phase kxΔx∕z, for the vortex beam with topological charge
(TC) l is the spiral phase lθ, and for the Airy beam with modu-
lation parameter b is the cubic phase ðx3 þ y3Þb, where x, y, z,
and θ are the Cartesian or polar coordinates. Beyond these cases,
some important CPFs defy this linear property, but their first-
order approximations can serve as the acceptable CPFs. For in-
stance, when axial defocusing amount Δz is negligible relative
to focus length f, a proper defocusing CPF approximation is
−kr2Δz∕ð2f2Þ. More examples of CPFs and corresponding
parameters are listed in the Supplementary Material.

The linear modulation parameters, including Δx, l, b, and Δz
mentioned above, are the key elements of controlling the struc-
tured light properties (e.g., altering the TC l to change the car-
ried OAM in a vortex beam). Based on them, the description of
the structured light array using CPFs and modulation parameters
is similar to describing several vectors in a multidimensional
linear space with a set of basis vectors and coordinates. In this
concept, we can build the multidimensional parameter space,
where the “coordinates” about the structured light array are
stored, and each dimension represents an independent modula-
tion parameter and is intrinsically linked to the corresponding
CPF. In addition, the dimensions in parameter space are with
equal standing and are redefinable. Typically, this parameter
space is more compact than the complex amplitude profile
on a pixel-wise basis. For visualization clarity, our exploration
is confined to the 3D parameter space, depicted as the left
cube in Fig. 2(b). Nonetheless, this framework is scalable and
naturally adaptable for parameter spaces of higher or lower
dimensions.

The second step focuses on harnessing the neural network to
calculate an effective primitive function. As in the above de-
scription, the CPFs and the parameter space are sufficient to de-
termine a certain structured light array, but the exact solution for
the CGH is still confusing. Here, we present a mathematical
framework to link the target parameter space and the CGH
(see Supplementary Material for a more detailed description).
Like the analysis of Dammann grating,28 the discrete and peri-
odic nature of the array enables us to represent the CGH as a
weighted summation of the complex amplitudes of the CPF’s
multiples,

exp½jφðx; yÞ� ¼
X∞

l1¼−∞
…

X∞
lN¼−∞

al1;…;lN × exp

�
j
XN
i¼1

αiðx; yÞli
�
;

(1)

where φðx; yÞ is the 2D phase distribution on the CGH, N is
the dimension of the parameter space (N ¼ 3 here), li is the co-
ordinate of the ith dimension in the parameter space, αiðx; yÞ is
the CPF of the ith dimension, and j is

ffiffiffiffiffiffi−1p
. In Eq. (1),

exp½jP αiðx; yÞl� is the modulated complex amplitude corre-
sponding to each independent structured light defined in the
parameter space. Crucially, the complex coefficient al1;…;lN is
the weight of each structured light. jal1;…;lN j2 directly relates to
the energy proportion of the beam with coordinates l1;…; lN
and is preset in the target parameter space.

Equation (1) is noted to be very similar to a Fourier series.
Assume there is a multidimensional primitive function
exp½jSðt1;…; tNÞ�, whose moduli all equal to 1 and whose angle
is Sðt1;…; tNÞ. The value of Sðt1;…; tNÞ is subtly arranged to
meet the criterion that its Fourier series coefficients share the
same moduli with jal1;…;lN j. Then, the Fourier series of primitive
functions will become exactly the same on the right side of
Eq. (1) when we consider αiðx; yÞ as ti and it indicates

exp½jφðx; yÞ� ¼ expfjS½α1ðx; yÞ;…; αNðx; yÞ�g: (2)

In this way, φðx; yÞ is converted into a composite function
form. The inner function is the CPFs αiðx; yÞ and the outer
one is the primitive function exp½jSðt1;…; tNÞ�. In the follow-
ing, our claims about primitive function only refer to the angle
part S for simplicity.

To determine the value in S, we introduce a neural network,
illustrated in Fig. 2(b), where the input and output are shown
with particular emphasis. The input of the network is the afore-
mentioned 3D parameter space, with the same eight-pixel res-
olution in every dimension. The output is the primitive function
S with 64-pixel resolution. The network adopted the well-estab-
lished U-net structure29 and integrated the resblock.30 U-net
framework features an encoder-decoder configuration and con-
tains skip connections that simultaneously capture both overall
trends and local details. The loss function in training is first the
classical L2 loss and then shifts to 0.5

�
1 − cosðx − x̂Þ�, where

x is the predicted value of the network and x̂ is the ground truth.
The latter loss function can perfectly evaluate the periodic phase
values. Even though the common 3D convolutional networks
are parameter-dense, RediNet is exceptionally lightweight, con-
sisting of mere 22.4 million network parameters. This concise-
ness translates to swift prediction time, typically under 3 ms on
a consumer-grade graphics processor. Details of the neural net-
work structure and training can be found in the Supplementary
Material.

In the third step, as shown in Fig. 2(c), the postprocessing
maps a 2D CGH from the 3D primitive function S, which is
the output of the network. For each pixel, the mapping pro-
cedure is the same, similar to the composite function evaluation.
For pixel ðx0; y0Þ, we can compute three αiðx0; y0Þ values.
Taking them as 3D coordinates, we can evaluate φðx0; y0Þ by
computing S½α1ðx0; y0Þ; α2ðx0; y0Þ; α3ðx0; y0Þ� as the instruction
in Eq. (2). Then, repeating this procedure for every pixel yields
the whole CGH φðx; yÞ.

2.2 Generation of 3D Primitive Function Data Set

Network training demands a data set containing 3D Fourier
series of coefficients and corresponding primitive functions,
but there is no suitable data set, to our knowledge. Therefore,
we employed an iterative algorithm to generate the data set. The
data set is the randomly distributed parameter space and the
corresponding primitive function as ground truth. Normally,
nonlinear optimization is needed for this kind of ill-posed prob-
lem, so we give a parallel iterative Fourier transform procedure.
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The constraints in the iteration contain two crucial criteria: for
the primitive function, it needs to be real-valued; for the param-
eter space, its modulus needs to be identical to the given param-
eter space. The details of this iteration algorithm can be found in
the Supplementary Material.

The generated data set is saved as a 3D matrix in a MAT file
(with commercial software MATLAB) and can be loaded and
converted to tensors. Code for generating the data set and sev-
eral pairs of data samples are available at https://github.com/
LiHengyang1/RediNet.

2.3 Computational Environment

The calculation, including data set generation, training, predic-
tion, CGH generation, and evaluation, is performed on a per-
sonal desktop with an Intel processor I7 13700, 32 GB of
memory, and a graphic processor Nvidia RTX3080Ti. Network
training and prediction are based on Pytorch 1.12, and the pre-
and postprocessing stages are performed on MATLAB R2023a.
All the comparison studies are performed in the same computa-
tional environment.

2.4 Phase Modulation System

The laser holographic system consists of an Nd:YAG laser with
a central wavelength of 1064 nm. The beam is expanded to
7.9 mm diameter and collimated. A phase-only reflective liquid
crystal SLM (X13138, Hamamatsu) is utilized for the phase
modulation, which features a 1272 × 1024 resolution and a
12.5 μm pixel pitch. In the experiment, only the central circular
portion of the SLM is used to modulate the wavefront, while the
other pixels are set to blazed grating. A phase CGH with 8-bit
depth is loaded onto the SLM, corresponding to the phase
modulation depth from 0 to 2π. A 12-bit depth camera is used
to capture the intensity distribution. The pictures of the exper-
imental setup are in the Supplementary Material.

To determine the phase pattern on the focal plane, a reference
beam is used for interference. By deliberately introducing an
angle between the modulated beam and reference beam, the
phase distribution can be solved with a single fringe intensity
picture. The detailed approach is given in the Supplementary
Material.

3 Results

3.1 Customizing Structured Light Array with RediNet

RediNet is applied to the generation of myriad structured light
arrays with diverse distributions. We should underline that
the network parameters of RediNet remain constant, and no iter-
ative procedures are performed throughout the experiments. As
mentioned above, the experimental setup is easily accessible,
where a phase SLM is used as the only modulation device.

First, we have generated focus arrays on the focal plane and
in 3D space. As shown in Fig. 3(a), by utilizing only two di-
mensions of the parameter space as x- and y-direction shifting,
a symmetric equal-energy four-foci array can be generated with
an intensity root-mean-square error (RMSE) of 0.051. By addi-
tionally including the modulation over the axial defocusing in
the third dimension of the parameter space, we can sculpt a 3D
focus array with four layers, a total of 19 foci randomly
distributed, and an RMSE intensity of 0.193. At this point,
the dimensions in parameter space exactly correspond to the

physical space dimensions, so the intuitive graphical match be-
tween them is apparent in Fig. 3(a). As mentioned before, we
used an approximate CPF for axial defocusing, so the positions
of the four planes show a slight deviation on the z axis.
Associated with the 400-mm-focus-length lens used in the ex-
periments, the actual four planes are located at z ¼ 25.5, 12.4, 0,
and −11.7, corresponding to the target 24, 12, 0, and −12 mm,
respectively. In practical applications, this discrepancy is negli-
gible when the defocusing magnitude is small and it is virtually
nonexistent in tight focusing situations, confirmed by its theo-
retical axial defocusing CPF.31

RediNet can produce parallel arrays of LG mode beams by
imitating their phase distributions. The corresponding modula-
tion phase patterns for different orders of LG mode are given in
Fig. 3(b), encoded as a combination of spiral phase and radial
step phase. Since the radial step phase is difficult to express as a
linear function of a parameter, all its inner phase rings are con-
sidered as invariants, and the outermost ring is independently
manipulated with one dimension in the parameter space with
values only “switching” between binary numbers 0 and 1.
Using the generated CGHs, a fundamental mode Gaussian beam
is sculpted into beam arrays with LG00, LG01, LG10, and
LG11 modes and LG22, LG23, LG32, and LG33 modes at dif-
ferent positions.

Researchers have experimentally produced a variety of non-
diffracting beams whose transverse light field patterns remain
almost unchanged after long-distance propagation.32 This
unique feature has propelled a range of practical applications,
from optical micromanipulation,33 laser drilling,34 to light
bullets.35 Using RediNet, we multiplexed three Bessel beams
and three Airy beams, respectively. Three identical Bessel
beams are generated with different propagation directions, as
shown in Fig. 3(c). Three Airy beams are distributed at different
positions, and the modulation parameter b in the CPF takes
the values of þ1, þ2, and −3, respectively, which leads to
the observable different bending trajectories and directions.
At the same time, the larger absolute value of the parameter
b contributes to more pronounced sidelobes of the Airy beam
that appeared on the focal plane.

The light field expression of a vortex beam has an expðjlθÞ
term, so it possesses a spiral phase pattern. Not limited in the
optical traps and microstructure fabrication, extensive applica-
tions could benefit from RediNet owing to customized control
on various vortex beam arrays. There are similar circular inten-
sity patterns in Figs. 4(a) and 4(b), yet they emerge from differ-
ent modulation strategies. In Fig. 3(b), we utilize a radially
linear CPF krΔR∕z, which mimics a conical lens, making
the intensities on the focal plane transform into rings with the
radius proportional to the parameter ΔR, but without the spiral
phase property. In contrast, in Fig. 4(c), we used the angularly
linear CPF lθ to obtain a vortex beam array. The smaller donut
distributions on the diagonal all carry þ8 TCs, and the larger
ones on either side carry þ12 TCs.

The ring radius of a conventional vortex beam depends on the
TC l, as can be observed in Fig. 4(b). To circumvent this rel-
evance, a perfect vortex beam is introduced whose ring radius
is independent.36 It can be realized by overlaying spiral and coni-
cal phases, similar to combining the effects of Figs. 4(a) and 4(b).
This implementation is realized in Fig. 4(c), where perfect vortex
beams at different positions carry different TCs but with nearly
identical ring radii and widths. Moreover, RediNet allows for in-
dependent modulation of the angular and radial CPFs at the same
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time. In Fig. 4(d), four perfect vortex beams are shown on the left
side with the ring radii and TCs varying from each other. On the
right side, there are four concentric rings with TCs progressively
changing from −2 to −8 as the ring radius increases.

Dissimilar from the vortex beam, the helico-conical beam pro-
duces an unclosed helical intensity distribution on the focal
plane.37 It is obtained by multiplying radial and angular CPFs,
leading to a nonseparable term. To deal with this special multi-
plication relation, we take the cross-product term as a whole. In
Fig. 4(e), a four helico-conical beams array is realized, forming
dual sets of unclosed helical trajectories surrounded by each
other.

The arrays with a large number of structured light species
have been enumerated in Figs. 3 and 4, and they basically
all correspond to a family of wave equation solutions so that
the CPFs and the formed structure light field have exact physical
meanings and properties. Beyond them, structured light could
be a broader concept, not limited by physically grounded
solutions. In the architectural essence, RediNet does not distin-
guish the physical meaning of structured lights. Any CPFs

are equally input and multiplexed with the same principles,
and this arbitrariness is the quintessence of network redefin-
ability. To verify this interesting capability, the snowflake
beam array is generated. First, we arbitrarily build two CPFs:
6fsgn½sinð8rÞ − 0.1�g þ 1.5r and 0.8r sinð6θÞ and add y shift-
ing. Then, the phase CGH is generated just in the same way
as other commonly seen structured light arrays. The obtained
intensity distribution is shown in Fig. 4(f), where different
hexagonal periodic structures appear at different locations,
similar to snowflakes with different structures. In this imple-
mentation, complicated patterns are controlled by only adjusting
two parameters, indicating a property like the vector graph that
a small number of parameters are enough to control a huge
number of pixels.

3.2 Modulating a Multichannel Compound Vortex Beam
Array with RediNet

Recently, many studies have explored the possibilities of
OAM in free-space optical communication.38,39 Because of the

Fig. 3 Customizing 2D and 3D focus arrays, LG beam arrays, and Bessel and Airy beam arrays
with RediNet. (a) Four foci in a square pattern are shown, with the phase CGH generated by
RediNet. In addition, a four-layer focus array is generated and captured, respectively. The target
parameter space is shown, where a similar distribution with intensity images can be found. The
defocusing distances of the pictures are labeled. (b) Two LG beam arrays are generated. The top
one includes LG00, LG01, LG10, and LG11 modes. Detailed intensity distributions on the left are
individually enlarged and normalized. Separated phase CGHs for each mode and the final CGH
are illustrated. Likewise, the bottom one shows the results and CGHs about LG22, LG23, LG32,
and LG33 modes. (c) Two kinds of nondiffracting beam arrays are generated, including Bessel
beam arrays and Airy beam arrays. The intensity distributions of a transverse plane and the 3D
volume are given, respectively.
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orthodox property, the vortex beams with different OAMs can
be used as separate signal channels or coding formats, or even
both.40,41 Going even further, the compound vortex beam array is
generated with RediNet, offering a novel example of concurrent
control on spatial position, energy proportion, and multiple
encoded OAM states.

From the implementation level, there were OAM multiplex-
ing experiments about splitting multiple vortex beams at discrete
spatial positions42 or gathering them into a singular compound
beam.43 The compound vortex beam array here is a much more
integrated solution thanks to the versatility of RediNet. With
only a phase SLM and a fundamental mode Gaussian incidence,
RediNet can produce a multichannel vortex beam array, with

each carrying the simultaneously dual OAM states shown in
Fig. 5(a).

To realize the array in Fig. 5(b), we designate x- and y-shift-
ing CPFs in two dimensions, and the angular CPF in the third
dimension in the parameter space. Only 0 or 2 nonzero values
are associated with an exact x and y coordinate, which implies
only 0 or 2 vortex beams are generated in an exact position on
the focal plane. In Fig. 5(b), randomly distributed eight-channel
compound vortex beams are shown, with each channel simul-
taneously carrying a positive and a negative OAM state. This
phenomenon finds its physical counterpart in multiposition vor-
tex beam interference experiments. For instance, in Fig. 5(c),
compound vortex beams with OAM states 3 and –4 are

Fig. 4 Customizing ring-focus arrays, vortex and perfect vortex beam arrays, helico-conical beam
arrays, and snowflake arrays with RediNet. (a)–(e) The distributions of intensity and the distribu-
tions of the product of intensity and phase. The TCs l and normalized ring radiuses r (minimum as
1) are labeled in the figures. (f) The generation and the result of the snowflake intensity pattern.
Arbitrarily built CPFs and the final CGH are illustrated and are used to generate four snowflakes in
different positions on the focal plane.
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interfered, resulting in seven petals corresponding to their gap.
The experimental intensity and phase distribution are compared
with the simulation results, which are basically consistent. We
added an overall conical phase in the CGH to achieve the com-
pound perfect vortex beam array. As a result, uniform-sized ring
radii are realized, probably simplifying the engineering effort
of coupling beams into the same model of special-designed
waveguides.44

It is also worth mentioning that RediNet takes roughly 12 ms
to generate this phase CGH with 10002 resolution, which is
faster than the mainstream SLM frame response time (16.7 ms
or 60 Hz). This efficiency is crucial for optical communication
and other real-time required scenarios, outperforming the
iteration algorithms encumbered by their compute-storage-use
procedure.

3.3 Flexibility, Speed, and Accuracy of RediNet

A uniform and redefinable parameter space underpins the ver-
satility of RediNet. Within the conventional neural networks re-
lated to spatial 3D light fields, the z axis (wave vector direction)
often plays a specialized role due to its implication with wave
propagation characteristics. In contrast, RediNet’s architecture
endows each dimension with equal standing. This symmetry
permits users to arbitrarily redefine the designation of each di-
mension, thereby designing the parameter space complying with
their own rules. Here, to verify this feature, we provide an illus-
trative example of exchanging the designation of dimensions
[Fig. 6(a)]: first, we define three dimensions as x shifting,
y shifting, and the radius of ring focus, respectively, fill in some
arbitrary values into the target parameter space and save it as a
3D matrix. Accordingly, an intensity distribution on the image
plane can be obtained. In the second step, the parameter desig-
nations on the three dimensions are kept unchanged, but the val-
ues of the parameter space P, i.e., the 3D matrix is permuted.

Now, the correspondence of the value and parameter is disor-
dered so that the obtained distribution of light intensity is
divergent from that obtained in the first step. In the third step,
the parameter designations and the values are permuted together
from the initial state. Although the values are now transferred to
new positions in the parameter space, the value-parameter cor-
respondence is restored to its initial alignment. Consequently,
the result intensity distribution is identical to that of the initial
state.

In the realm of neural networks, the resolution of the output
is typically immutable, firmly anchored by the network’s archi-
tecture, and infeasible to adjust after training is completed. If a
high-resolution CGH is required, one needs to reconstruct and
retrain a larger-scaled network, bringing about an increase in
training cost. RediNet, however, has an unusual architecture
liberated from the confinement of output CGH resolution.
The mapping procedure allows the resolution of the primitive
function to remain static, while the resolution of the CGH
can be arbitrarily adjusted through different CPF resolutions.
In this way, the power of resolution control on the CGH is ceded
to the explicit CPFs, which are some simple and exact formu-
lations. This exotic property of providing arbitrary resolution
CGHs with a fixed network is verified in Fig. 6(b). RediNet ac-
complishes a prediction task and then the single output primitive
function generates three different CGHs with different resolu-
tions. Since the mapping from the CPFs to the CGHs is a serial
procedure, time consumption increases proportionally with the
increase in resolution. From the zoomed-in figures, it is evident
that the three CGHs share the same pattern, whereas the highest-
resolution one keeps richly detailed phase variations, allowing
more accurate manipulation of the spatial frequency. Unlike the
upsampling on a bitmap, the approach and performance from
4802 to 38402 resolution are also similar to vector graphic
scaling, based on a set of control parameters and fundamental
elements rather than relying on the low-resolution image itself.

Fig. 5 Conceptional graph and results of multichannel compound vortex beam array generating
with RediNet. (a) The conceptional graph about sculpting a fundamental mode beam to multichan-
nel compound vortex beams with respective multiple OAMs. (b) The captured intensity distribution
of multichannel compound vortex arrays on the focal plane, which is similar to interference results,
but is generated from only one modulated beam instead of real existing signal and reference
beams. (c) An example of a compound vortex beamwithþ3 and −4 TCs. The detailed distributions
of intensity and the distributions of the product of intensity and phase in simulation and experiment
are shown for comparison.
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Figures 6(a) and 6(b) show the flexibility coming from the
input preprocessing and output postprocessing of the network,
respectively. Furthermore, RediNet is fast due to its small-
scale input as well as its simple network structure. We restrict
the application scenario to 3D multifocal arrays to compare
our method with some established algorithms. Among them,
NOVOCGH utilizes a nonconvex optimization method, mainly
aiming at the phase retrieval of arbitrary light-field distributions
on multiple transverse planes;45 the 3DIFTA method adopts
Gerchberg-Saxton-like iterations and the 3D Fourier transform
relationship between the Ewald’s cap and the 3D image space;16

the SACAD algorithm uses automatic differentiation to obtain
high-quality 3D focal array inside the material;17 and DeepCGH
also relies on neural network to realize multidepth light-
field reconstruction, which can output complex CGH on both
amplitude and phase.46 RediNet consumes significantly less
time than the other algorithms in generating a CGH for the
seven-layer focus arrays, both in the case of 5122 and 10242

resolutions. This swift performance underscores RediNet’s
computational efficiency, but admittedly it compromises the
complexity of the target light field due to the small resolution
of the parameter space.

Fig. 6 Numerical evaluation of RediNet performance. (a) Flexibility of dimension designation in
parameter space. Compared with the first column, values in parameter space are permuted, and
the simulation result is different in the second column. The values in the parameter space and the
dimension designations are both permuted in the third column, but the simulation result is identical
to that in the first column. (b) Flexibility of CGH resolution in mapping procedure. The CPFs of
x , y , and θ with three different resolutions are involved in the mapping, and then three CGHs with
resolutions of 4802, 9602, and 38402 are produced. Time consumption in each step is labeled.
The partially enlarged patterns are shown. (c) Computation time comparison of five algorithms,
including CGH by non-convex optimization (NOVOCGH), 3DIFTA, SACAD, DeepCGH, and
RediNet. Tasks of generating CGHs of resolution of 5122 and 10242 are included. (d) Diffraction
efficiency and RMSE of RediNet with different numbers of beams in an array. In the blue region,
numbers of beams are not within the training data set. (e) Correlation analysis of RediNet based on
target parameter space and the Fourier series coefficients expanded from the RediNet output
primitive function. Data points under the situations of 10, 20, and 30 beams in an array are shown
in different colors.
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Finally, a brief assessment of the accuracy of RediNet is illus-
trated. The trends of diffraction efficiency and RMSE with the
number of subbeams in an array, N, are shown in Fig. 6(d). As
N becomes larger, the diffraction efficiency decreases and the
RMSE increases. When N is 50, the diffraction efficiency is
about 70%, and the RMSE does not exceed 0.2. In the training
data set we used, data with N more than 32 is nonexistent. The
blue area on the right side in Fig. 6(d) shows the performance
exceeding the biggest N in training data, and the trends of
diffraction efficiency and RMSE remain basically unchanged,
which reflects the generalization of the network.

As a regression task, the correspondence between the input
Al1;l2;l2 and the jαl1;l2;l2 j expanded from output is illustrated in
Fig. 6(e). The regression plots for the three different N cases
are given, revealing a satisfactory input–output correlation.
When the input value is negligible (a beam with energy below
10% of the maximum), the network may handle it as 0. The
overall correlation coefficient is 0.9711.

4 Discussion and Conclusion
The effectiveness of RediNet has been experimentally demon-
strated, yet its capabilities can be further extended, aiming
against some limitations we have discovered. First, the 3D
parameter spaces and primitive functions used here are with
small effective resolutions (83 and 643). There is no obstacle
to expanding them to higher resolutions according to our frame-
work, enabling larger-scale arrays as well as denser steps of the
CPF values. Second, limited by the difficulty of visualizing
higher dimensions, only the 3D RediNet is reported in the ar-
ticle, but Eqs. (1) and (2) substantiate the method’s applicability
to higher dimensional extensions. This means that more struc-
tured light species can be multiplexed concurrently, potentially
yielding more complex or even entirely new structured lights.
Third, continuously integrating innovations from the research
on high-functioning neural networks is an effective way to
promote performance and is what we will actively pursue in
the future.

In terms of computational acceleration, as shown in Fig. 6(b),
our analysis reveals a marked disparity in computational effi-
ciency between network prediction and the mapping process.
As delineated in Fig. 2(c), the mapping process in our code
is executed serially based on pixel positions. This is a task of
accessing storage by address, which is expected to be parallel-
ized by the specially designed codes or hardware, contributing
to a huge computational speedup.

In summary, we have demonstrated RediNet, a versatile, non-
iterative, and resolution-flexible strategy for generating numer-
ous kinds of structured light arrays based on the phase CGH.
There are two critical features compared with conventional neu-
ral networks targeting beam modulation problems. One is the
input of RediNet in a uniform parameter space, where the des-
ignation of each dimension can be redefined, ensuring RediNet
adapts to almost all structured light arrays as long as they are
theoretically possible to achieve with a phase hologram. The
other is that the CGH resolution is decoupled from the network
architecture, so that a mini, static network can generate original
resolution-arbitrary CGHs. By mathematically distilling key in-
formation from the light field, RediNet seemingly steps away
from the common end-to-end concept in deep learning, but it
exploits the sparsity of the arrayed light field, obtaining a re-
markable reduction in network complexity and achieving the
isolation of the fixed computation kernel from variations.

Therefore, this concise and one-way algorithm may empower
researchers to deploy the program on low-cost processors rather
than expensive high-performance computers for real-time CGH
generation. We anticipate that RediNet can accelerate the appli-
cation of structured light arrays in high-dimensional free-space
optical communication, single-exposure parallel laser direct
writing, flexible high-throughput medical imaging, optical traps,
and so on.
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