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Abstract. For fabrication of high-performance mirror devices, technical aluminum alloys
Al6061 or Al905 are widely used. The surface error topography after manufacturing by single-
point diamond turning is applicable in the infrared spectral range. For increasing demands on the
optical surface quality in the shortwave visible and ultraviolet spectral range, further improve-
ment of the surface roughness is required. Hence, a promising alternative process to attain the
required surface quality is evaluated. Within the ion beam planarization technique, a photoresist
layer is deposited by conventional spin coating or spray coating technologies exhibiting an ultra-
smooth surface. When removing the resist by reactive ion beam etch (RIBE) processing using
nitrogen process gas, the ultrasmooth surface topography of the resist is transferred into the
substrate. We optimized the photoresist thermal pretreatment to realize roughness preservation
and a steady-state material removal rate during RIBE machining. The optimum preparation steps
are explored based on roughness evaluation, chemical modification, and etch resistance of the
negative photoresist. Reactive ion beam etching-based planarization is conducted on single-point
diamond turned RSA Al905 and RSA Al6061 samples made of rapidly solidified aluminum
(RSA) in a two-step process. The optimum process and the roughness evaluation are explored
by topographic analysis applying a combination of white light interferometry and atomic force
microscopy measurements. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.6.1.014001]
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1 Introduction

Optical mirrors are designed to reflect light for a variety of applications, including beam steering,
interferometry, imaging, or illumination.1–3 An alternative to conventional glass as a substrate
material for a metallization layer as a mirror device is aluminum. High-strength and low-weight
large-scalable mirror optics can be designed.4,5 Aluminum is lightweight, cheap, and readily
formable with outstanding optical properties. Additionally, aluminum has a high-reflection
coefficient even in the shortwave range. The reflection coefficient ranges from the infrared (IR)
spectral range to the shortwave visible (VIS) and ultraviolet (UV) spectral range with values
well above 90% and, therefore, exceeds optical materials like gold, silver, or copper.6

Single-point diamond turning (SPDT) is used to figure metal surfaces in optical fabrication.
The optical surface has roughness values of typically below 10 nm root mean square (rms) and at
best 2 to 3 nm, regarding the required precision for applications in the near-infrared and IR
spectral range.3,4,7,8 Modern telescope optics for space applications based on three-mirror-
anastigmat are designed of ultraprecise aluminum mirrors. The machined surface after SPDT
still has the periodic groove pattern microstructures left by the cutting tool. Those so-called
turning marks have a pitch of some microns and an amplitude ranging between 10 and 30 nm.
As a result, for short-wavelength applications in the VIS and UV spectral range, these periodic
patterns have effects similar to that of a diffraction grating.8,9 To minimize scatter losses by
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removing these structures, one technological solution is the electroless plating with an amor-
phous nickel phosphorous (NiP) layer.3,8,9

NiP has an isotropic amorphous matrix that is suitable for the following combination of
SPDT and polishing process. Diamond-turned NiP reveals even smoother surfaces than alumi-
num; it can be further improved by the ion beam planarization (IBP) process, and turning marks
are successfully reduced. A further decrease in surface roughness can be obtained by multiple
run IBP processing.10,11 Hence, microroughness values of <1 nm are achievable, resulting
in ultraprecise optical surfaces for VIS applications. An additional metallization layer on top
of the NiP coating is necessary to realize the desired reflective properties for the specific
application.

The mismatch of thermal expansion coefficients between aluminum and NiP coating can
cause mechanical stress formation under thermal load conditions, resulting in bending and
distortion of the optical surface.12

One promising technology for overcoming these drawbacks is reactive ion beam etch (RIBE)
processing. In contrast to ion beam figuring (IBF) with an inert gas like argon, where the rough-
ness of the aluminum surface increases rapidly during the process, the operation with reactive
process gases such as oxygen and nitrogen allows the preservation of the initial surface topog-
raphy during ion beam processing.13,14 Thus this technology allows figure error correction of
aluminum mirrors without degradation of the surface quality.

For applications in the short-wavelength VIS or UV spectral range, it is necessary to improve
the high-spatial frequency properties of the surface after SPDT. Johnson et al.15 proposed an ion
polishing technique with the aid of a planarizing film to remove polishing scratches on fused
silica.16 As illustrated in Fig. 1(a), the initial surface is covered with a planarizing layer of a
specific thickness, so the high-spatial frequency surface roughness features are fully embedded
and surface waviness is leveled to a considerable extend. As a result, a smooth and planar surface
is revealed. Depending on the initial surface quality, the thickness of the planarizing film
typically ranges between some 100 nm and a few microns. Then the plane surface is transferred
into the underlying substrate by ion beam etching. To ensure an optimum surface transfer, the
etch rates of planarizing film and aluminum substrate should be equal. The ratio of the etch rates

Incidence angle
of ion beam 

P

E
tc

h 
ra

te

Photoresist 
layer

Workpiece

(a)

(b) (c)

Oxygen fraction
in argon

xP

E
tc

h 
ra

te

0 1

Photoresist 
layer

Workpiece

Photoresist layer

Workpiece

ProcessScanning
ion beam

Ion incidence 
Angle

Fig. 1 Principle of (a) IBP technique according to Johnson et al. Illustration of plane surface trans-
fer of planarization layer into aluminum workpiece by scanning ion beam. (b) Dependency of etch
rate for workpiece and coating material on incidence angle of ion beam. Planarization angle (θP ) is
marked as point of intersection for both curves. (c) Etch rate dependency of photoresist layer and
workpiece on process gas composition and resulting selectivity. An intersection point of both
curves (xP ) for a specific operating gas mixture is marked.
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between aluminum substrate and planarizing film is defined as the selectivity. Usually, the ion
beam etch rates differ for the material to be machined.

Hence, to achieve a successful IBP, the process conditions have to be customized to the
specific material combination. In pure physical etching, i.e., ion beam sputtering, the etch rate
strongly depends on the ion energy and the ion incidence angle. However, the scaling of the etch
rate with respect to the ion energy behaves similarly for most materials. By contrast, the specific
characteristics of the ion incidence angle can be considerably diverse for different materials to be
machined. So, for many material combinations, there is a crossing in the incidence angle-
dependent etch rate characteristics, which is defined by the so-called planarization angle [see
Fig. 1(b)]. Thus processing at the planarization angle θP is one common solution for realizing
equal etch rates for both materials.

If the removal process is dominated by chemical ion-surface-interactions, the etch rate can be
additionally adjusted by the process gas composition as well as the ion energy [see Fig. 1(c)]. For
many material combinations, there is also a crossing of operating gas mixture-dependent etch
rate, which is marked with an intersection point xP. In ion beam processing with reactive process
control, there is a mixture of physically and chemically driven etch removal, so extended degrees
of freedom are available for process development.

Polymer coatings are an excellent choice for the IBP technique. A negative photoresist as the
planarizing layer has several merits. The resist film can conveniently be applied by industrial
standard techniques like spin coating or spray coating, the thickness is controllable by spin speed
and dilution, and the cross-linking of the negative working photoresist during exposure to UV
light reduces the photosensitivity significantly.

This paper focuses on IBP using a nitrogen-containing process gas at normal ion incidence
angle of commercially available rapidly solidified aluminum (RSA) alloys RSA Al905 and RSA
Al6061 with the aid of a photoresist layer. For rapid solidification, the melt spinning process is
applied. As a result, the polycrystalline material matrix contains grains with a few micrometers in
size only. Hence, RSA material is harder than coarse grain aluminum and exhibits an increased
stiffness with improved device construction properties. Furthermore, RSA seems very promising
for applications in the VIS and UV spectral range due to the reduced surface roughness com-
pared with standard aluminum alloy materials. According to Gubbels et al.2, RSA Al6061
mainly contains Mg, Si, Cu, Fe, and portions of Cr, Mn, Ti, and Zr within the aluminum base.
By contrast, ter Horst et al.17 found a reduced composition consisting of Mg, Si, and Cu within
the aluminum. During RIBE processing with oxygen, significant Si and Mg fractions are found
to accumulate together within the etch pits.13 Consequently, to avoid inhomogeneous matrix
structure effects, a so-called “second generation” aluminum alloy RSA Al905 was additionally
tested; it does not contain Si and Mg, but mainly Ni, Cu, Fe, and portions of Mn, Zr, and Mo
within the aluminum base.17 In contrast to RSA Al6061, the second alloy material RSA Al905
cannot be heat-treated but is dispersion hardened.17 RSA Al905 was found to form less etch pits
with smaller sizes in the submicrometer range compared with RSA Al6061.13

After a description of the experimental setup in Sec. 2, we subsequently report the influence
of temperature, deep-UV (DUV) exposure, and RIBE processing on the chemical composition
and surface roughness of negative tone photoresist in Secs. 3.1 and 3.2. The influence of RIBE
processing on roughness evaluation and chemical composition of RSA Al905 and RSA Al6061
is reported in Sec. 3.3. Finally, the possibilities of IBP with reactive process control are eluci-
dated in Sec. 3.4. The etch behavior is analyzed with a distinct focus on the surface roughness
and the local chemical modification.

2 Experimental

2.1 Sample Preparation

The negative working photoresist ma-N 2405 (microresist technology) was used as the
planarization layer. The photoresist is one type of the ma-N 2400 series. The ma-N 2405
type is specified with a dynamic viscosity of (ð8� 1Þ mPa s resulting in approximately
ð0.5� 0.05Þ μm film thickness during a 30-s spin-coating application at 3000 rotations per
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minute.18 Aluminum disc samples were cleaned with acetone and polished p-type Si (100)
wafers were cleaned with isopropanol prior to photoresist coating. Conventional UV irradiation
in a photolithography system was applied to provide a homogeneous and well cross-linked pol-
ymer matrix. The process steps are illustrated in Fig. 2. First, the photoresist is deposited using a
spin coater for 30 s at 3000 rotations per minute. In accordance with the thickness of the substrate
materials, the baking times for silicon wafer and aluminum substrate were adapted. Since the
aluminum disc samples are about 15-mm-thick and silicon wafer are ∼0.3-mm thick, longer
baking times on the hotplate were chosen for aluminum substrates. Consequently, the resist film
is baked on a hotplate in air at 90°C for 2 min on silicon wafer and for 6 min on aluminum.

DUVexposure is performed using a mercury short arc lamp that has an intensity dispersion of
13 and 5 mW∕cm2 for specific wavelengths of 405 and 365 nm, respectively. Due to the small
overlap of the lamp emission spectrum and the absorption spectrum of the negative photoresist
ma-N 2405, a relatively long exposure time of 120 s was chosen.18,19 The postbaking step was
applied at 150°C on a hotplate for 2 min on silicon wafer and 10 min on aluminum. After all
application steps, the photoresist layer thickness was ∼500 nm. The optimized preparation
parameters for photoresist application are summarized in Table 1.

2.2 Ion Beam Etching Parameters

Ion beam machining experiments were performed in a high vacuum chamber with a base pres-
sure of 4 × 10−5 Pa. The ion beam was generated by a 13.56-MHz radio frequency (RF) ion
source with a focusing triple grid extraction system allowing a constriction of the free-beam
without use of an aperture.20 The water-cooled sample holder is mounted on a five-axis motion
system. The water cooling ensures efficient heat dissipation from the sample, reducing thermal
affects during the process.

A Faraday cup is integrated into the sample holder and permits in situ spatially resolved beam
current density analysis before and after each etching run to determine the ion beam tool function
and verify their stability. Usually, the process conditions are chosen to result in a Gaussian
shaped tool function and thus can be characterized by the full-width at half-maximum
(FWHM) expressing the tool width and the integral beam current. We used nitrogen and oxygen
process gas for the generation of low-energy ion beams at ≤1.5 kV beam voltage. The FWHM
was typically 4 to 15 mm. The RIBE machining experiments were performed at normal ion
beam incidence angle to the substrate surface.

Fig. 2 Illustration of processing steps of a negative tone photoresist application.

Table 1 Photoresist preparation steps depending on substrate material thickness. Prebaking was
performed at 90°C and postbaking at 150°C on a hotplate in air. The substrates were heated up to
the maximum temperature in conjunction with the hotplate. The samples were cooled to room
temperature in air.

Substrate material Substrate cleaning Prebaking at 90°C (min) Postbaking at 150°C (min)

Aluminum RSA 905 Acetone 6 10

Aluminum RSA 6061 Acetone 6 10

Silicon h100i Isopropanol 2 2
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Preliminary experiments on photoresist layers were performed on spin-coated silicon wafers
with a diameter of 2 in. Additionally, the spin-coated silicon wafers were mounted on the water-
cooled sample holder with a heat-conducting grease between them to optimize the heat transport.
An aluminum mask with an opening diameter of 13 mm defined the machining area for ion beam
test etching experiments to determine the etch rates of the planarization layer and aluminum. The
ion beam was scanned s-like over the surface with a constant velocity of 4 mm∕s and a line pitch
of 1 mm. For each repetition, a mask border overrun of the scan area was conducted to ensure a
planar etch profile inside the opening area.

IBP experiments on RSA Al6061 and RSA Al905 were performed in a two-step process. In
the first planarization process step, the entire aluminum mirror surface, coated with the photo-
resist layer without an additional mask, was etched with N2. During this process step, 8 to 10
scan repetitions are necessary to remove the whole photoresist layer. In the subsequent second
process step, the whole aluminum surface was etched directly with O2 operating gas within one
scan repetition. The constant velocity of the second process step was chosen at 5 mm∕s and
1 mm line pitch. For the second RIBE finishing step, no photoresist layer was used.

The experiments were performed on aluminum planar disc samples with 47-mm in diameter
made of RSA Al905 and RSA Al6061 (RSP technology).21 The ion beam process parameter for
IBP processes and direct aluminum machining are summarized in Table 2.

2.3 Surface Analysis

The chemical composition of the photoresist was measured by IR spectroscopy using a Bruker
IFS 55 armed with a 64 deg grazing angle attenuated total reflection (ATR) accessory (Harrick
VariGATR™) with a coupled MCT detector. Thermal gravimetric analysis (TGA) was per-
formed with a Perkin Elmer model Pyris 1 instrument. The measurements were executed in
nitrogen atmosphere at a heating rate of 20 K∕min in the temperature range of room temperature
to 800°C. Differential Scanning Calorimetry (DSC) analysis was performed with a Perkin Elmer
model DSC 8500. The measurements were executed in nitrogen atmosphere at a heating rate
of 10 K∕min. The photoresist thickness was measured using a thin-film analyzing system
(Mikropack NanoCalc 2000).

Gas chromatography/mass spectrometry (GC/MS) measurements were performed with a
Agilent 5973 series. The measurements were conducted in vacuum at a heating rate of
10 K∕min in the temperature range of 45°C to 310°C. Surface composition analysis of the
modified layer formed during RIBE was monitored by x-ray photoelectron spectroscopy
(XPS, Kratos Ultra DLD). An Al x-ray source with monochromator provides the Al Kα line
at 1486.6 eV. Photoelectrons are released from the 300 μm × 800 μm analysis area. A retarding
lens system coupled by a hemispherical analyzer with 40 eV pass energy is used for energy

Table 2 Ion beam process parameters and corresponding etch rates of aluminum disc samples
RSA Al905 and RSA Al6061. The calculated selectivity results from the ratio of the etch rate of
aluminum to the etch rate of photoresist layer.

Material/process
Process
gas

Process
pressure
(Pa)

FWHM
(mm)

Beam
current
(mA)

Etch rate
(mm3∕h) Selectivity

Al905 (RSA) N2 3.8 × 10−3 9.9 1.94 0.54

RIBE planarization First run N2 3.8 × 10−3 9.8 1.97 0.52

Second run N2 1.6 × 10−3 8.4 1.89 0.55

RIBE finishing O2 1.3 × 10−3 4.3 1.68

Al6061 (RSA) N2 1.5 × 10−3 9.0 1.89 0.68

RIBE planarization First run N2 1.5 × 10−3 8.6 2.02 0.63

Second run N2 1.7 × 10−3 9.4 2.14 0.59

RIBE finishing O2 1.0 × 10−3 3.6 1.59
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separation. The energy filtered photoelectrons are amplified passing a microchannel plate and
recorded with a delay line detector.

The sample topography was analyzed by white light interferometry (WLI; Bruker
NPFLEX™ 3D Surface Metrology System) and atomic force microscopy (AFM; Bruker
Dimension ICON). For WLI, objectives with 5× and 10× magnifications were used with
1× field-of-view multiplier in phase-shift interferometry mode. The image sizes were 1230 μm ×
925 μm and 624 μm × 467 μm, respectively, with a pixel resolution of 640 × 480.

AFM was operated in tapping mode™ in a xy-closed loop configuration. Scanning areas of
3 μm × 3 μm, 10 μm × 10 μm, and 35 μm × 35 μm were measured with a pixel resolution of
1024 × 1024. The AFM raw data are subjected to a plane correction performed in SPIP™ soft-
ware (version 6.0.14 by Image Metrology).22 The correction consists of polynomial fit of the
first order and a line-wise correction to subtract a fitted polynomial function of the third order
from each scan line.

The surface roughness was analyzed by calculating the power spectral density (PSD) func-
tion using the SPIP™ software.22 A self-written MATLAB® script was employed for angular
integration resulting in the isotropic PSD. The spatial wavelength ranges for the different AFM
and WLI measurements are summarized in Table 3. The rms roughness values are derived from
the composite PSD function, which is a combination of the single measurements PSD functions
in the spatial frequency range of 0.0024 to 34.7 μm−1. Waviness and roughness rms values are
calculated in the spatial frequency range of 0.0024 to 1.7 μm−1. In the range of 1.7 to 34.7 μm−1,
the microroughness rms values are calculated.

Measurements on aluminum and photoresist surfaces were performed five times under the
same conditions but at different positions to calculate an averaged PSD function. Since the RIBE
planarization process is conducted on the whole substrate surface of 47 mm in diameter, each
measurement was performed eight times under the same conditions but at different positions.

Surface composition mapping of aluminum samples is performed by secondary-electron
microscope energy dispersive x-ray (SEM-EDX) measurements in a Zeiss Gemini Ultra 55
machine with a Bruker XFlash 3001 detector. A beam voltage of 15 kV, a beam aperture of
60 μm, and a working distance of 7.2 mm are applied.

Depth profiling of the sample composition in the near-surface region was done by dynamic
time-of-flight secondary ion mass spectrometry (TOF-SIMS V; IONTOF). Qualitative composi-
tion analysis of RSA samples is performed in positive mode. For sputtering, a 1-keVoxygen ion
beam is used. The aluminum near-surface region is examined in negative mode, in which a 500-eV
caesium ion beam is applied for depth sputtering. The analysis is done by a 15-keV Ga ion beam,
whereas the analysis scan field of ð50 × 50Þ μm2 is centered within the ð300 × 300Þ μm2 sputter
crater. The depth calibrations are provided by WLI analysis of the sputter crater depths.

3 Results and Discussion

3.1 Influence of Preparation Parameters on ma-N 2405 Negative Resist

The DUV sensitive negative tone photoresist ma-N 2405 is composed of a novolak as polymeric
matrix, the biazide as photoactive compound (PAC), and an organic solvent consisting of anisole

Table 3 Image sizes and spatial frequency ranges for sample topography measurements by AFM
and WLI.

Image size Spatial frequency range

AFM 3 μm × 3 μm 1.67 to 34.7 μm−1

AFM 10 μm × 10 μm 0.478 to 19.96 μm−1

AFM 35 μm × 35 μm 0.0857 to 7.31 μm−1

WLI (10× objective) 624 μm × 467 μm 0.00481to 0.120 μm−1

WLI (5× objective) 1230 μm × 925 μm 0.00243 to 0.0786 μm−1
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and cyclopentanone.18,23 During exposure, the solubility of negative working photoresist is
reduced. The organic solvent is essential for depressing the viscosity of the solution to realize
the spray or spin coating onto workpieces.23,24 The negative photoresist ma-N 2405 is applied by
spin coating on the workpiece, prebaking, and exposing in DUV light. The remaining organic
solvent is reduced by prebaking and optional postbaking to prevent bubbling by evaporating
solvent during subsequent thermal processes and to increase the etch resistance and thermal
stability (see Fig. 2).18 The baking temperatures range from 90°C to 110°C for the prebaking
and postbaking steps.18

To improve the resistance of the negative photoresist ma-N 2405 for RIBE processing, the
applications steps DUVexposure and postbaking are examined in detail in the following. During
DUVexposure, the azide groups of the PAC (R − N3) release nitrogen and the resulting reactive
nitrenes (R–N:) initiate the cross-linking of the resist.23,25–27 To ensure a proper cross-linking
state by the applied exposure routine, IR spectroscopic measurements were performed before
and after DUV exposure of the negative photoresist ma-N 2405. For that reason, the following
conclusions about the polymer matrix state are drawn from the relevant vibration mode fre-
quency bands as marked in Fig. 3.

The measured IR spectra of the negative photoresist ma-N 2405 (black curve in Fig. 3) show
the characteristic absorptions of a phenolic structure23,28–31 and of the azide groups (−N3) of
the PAC with three main characteristic vibrational bands. The strong frequency in the region
of 2160 to 2090 cm−1 corresponds to the asymmetric stretching vibration. The symmetric
stretching vibration is located at 1340 to 1180 cm−1, and the azide bending vibration is around
700 cm−1.23,32

After DUVexposure of ma-N 2405 (blue curve in Fig. 3), the peak intensities in the range of
3600 to 2900 cm−1 increase. This may be due to the reaction of the hydroxyl group of the novo-
lak polymer with the intermediate of the photoinduced decomposition of the biazide.23 Partially
reduced peak intensities in the relative broad region of 1720 to 1000 cm−1 might result from
PAC decomposition since deformation vibrations of −NH2 or –NH or –CN stretching vibrations
of the PAC are located in this region.23,26,28 The peak intensities dedicated to the azide group of
the PAC located at 2108 cm−1 (asymmetric stretching), 1340 to 1180 cm−1 (symmetric stretch-
ing) and ∼700 cm−1 (bending) decrease immensely. This behavior is consistent with the cross-
linking mechanism of the negative photoresist.23,25,27 In correlation with the decomposition
of the PAC, the peak intensities decrease; therefore, the probability of cross-linking within the
polymer network is increased.

To provide optimum photoresist layers for RIBE processing, the thermal stability limits of the
photoresist and the organic solvent were investigated by TGA, GC/MS, and DSC. The results of
DSC and TGA measurements of ma-N 2405 resist after DUV exposure, prebaking, and post-
baking are in good agreement with results from Ref. 33, who did a careful resin preparation of
phenol formaldehyde polycondensates to ensure no entrapped organic solvent. GC/MS measure-
ments of the negative tone photoresist before and after postbaking indicate that remaining
amounts of organic solvent (cyclopentanone and anisole) after prebaking are almost completely
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Fig. 3 ATR-IR measurements of negative photoresist ma-N 2405 before DUV exposure (black
curve) and after DUV exposure (blue curve). Peak intensities dedicated to azide groups of
PAC decrease immensely during DUV exposure.
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removed during the subsequent postbaking at 150°C. Postbaking at elevated temperatures above
200°C may avert the beginning of the thermo-oxidative degradation mechanism proposed by
Jackson and Conley et al.,33 Conley,34 and Shulman and Lochte.35 The main degradation reaction
of the polymer backbone occurs from ∼300°C to 600°C.33–36

This result is of major importance since the degradation mechanism can also be expected to
appear during ion beam treatments if the heat dissipation is not sufficient. Indeed, a strong resin
degradation was observed either at high-ion current densities, which are accompanied by a
strong thermal impact into the resist layer, or for insufficient sample cooling.

To obtain reliable, reproducible results, the ion beam experiments were carried out with
a water-cooled sample holder. Furthermore, the samples are mounted with the aid of a heat-
conducting grease to allow good thermal contact during ion beam processing. To avoid too
high-ion current densities, the working distance, i.e., the spacing between ion source and sample,
was usually chosen >50 mm.

The influence of photoresist postbaking on surface roughness was investigated by AFMmea-
surements. The negative photoresist ma-N 2405 was spin coated on a silicon wafer, prebaked,
and DUV exposed; this is referred to as prepared. The photoresist was postbaked afterward at
150°C, 300°C, and 450°C, respectively. The surface of each sample was measured by AFM [see
Fig. 4(a)]. Figure 4(b) illustrates the calculated PSD function based on AFM measurements
(3 μm × 3 μm and 35 μm × 35 μm) of the as-prepared surface and subsequently postbaking,
respectively. The deviation of the PSD curve after postbake in comparison with the PSD curve
of the as prepared surface is an amount of surface degradation with regard to the spatial
frequency.

The initial surface roughness of ∼0.35 nm rms is preserved after postbaking at 150°C. In the
spatial frequency range below 0.3 μm−1, the PSD spectrum is even decreased. That may be
attributed to a structural reorganization and flowing occurring above the glass transition temper-
ature of noncross-linked areas of the novolak matrix.

For higher temperatures, a degradation is observed. In particular, the roughness is increased
to values of 0.45 nm rms after 300°C postbaking temperature and 0.7 nm rms after 450°C post-
baking temperature, respectively. As a consequence, the PSD deviation after 300°C is slightly
increased and after 450°C is significantly increased over the whole spatial frequency range. The
strongest degradation is obtained at 450°C postbaking. In particular, above 3 μm−1 and below
0.3 μm−1, the PSD deviation of the 450°C treated sample is strongly increased. These deviations
correlate to surface features with sizes below 330 nm and above 3.3 μm, respectively. A maxi-
mum deviation of ∼1 decade (dec) is obtained at 0.1 μm−1. Due to progressive polymer
degradation, areas with weaker bonds in the chemical structure of the polymer may preferentially
be cracked. Thus the layer thickness decreases irregularly, and consequently surface features of
≥3 μm lateral size are formed.33,37–39
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Fig. 4 (a) AFM measurements (3 μm × 3 μm) of negative photoresist ma-N 2405 (I) before and
after different postbaking temperatures at (II) 150°C, (III) 300°C, and (IV) 450°C, respectively.
(b) PSD function calculated on the basis of AFM measurements with scan sizes of 3 μm × 3 μm
and 35 μm × 35 μm.
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The chosen temperature of 300°C correlates with the beginning of novolak degradation. At
that stage, the polymeric backbone is cracked and fragments of different sizes start to evolve.
With progressive decomposition, the formation of larger fragments increases. These fragments
leave voids in the surface of the photoresist layer of different sizes and may cause the roughness
increase in the spatial frequency range above 3 μm−1.33

From the results obtained, a postbaking temperature of 150°C has been identified to be opti-
mal. The postbaking temperature for subsequent experiments is determined at 150°C since the
initial surface roughness is preserved and no novolak degradation occurs. In addition no struc-
tural changes of the novolak matrix are observed. Similar results were investigated by Voigt.23

For IBP, postbaking of the photoresist layer is an important processing step to ensure rough-
ness preservation. For preliminary experiments, photoresist was applied on smooth silicon
wafers. By contrast, diamond turned aluminum samples RSA Al905 and RSA Al6061 reveal
surfaces with periodical turning structures.

To analyze if these periodic features are embedded in spite of the temperature treatment of the
560-nm thin layer, the photoresist was analyzed by AFM measurements before and after post-
baking. During postbaking, the photoresist thickness was decreased to about 500 nm. Figure 5
shows AFM measurements and PSD functions of the initial aluminum surface and coated with
negative photoresist ma-N 2405 before and after postbaking, respectively.

The initial surface of RSA Al905 is dominated by 3 μm spaced turning marks corresponding
to the PSD deviation at 0.3 μm−1 with superstructures at 0.7, 1, and 1.4 μm−1 [Figs. 5(a) and
5(d)]. After photoresist application, the turning structures were almost fully embedded and a
smooth surface is revealed [Fig. 5(b)]. As a consequence, the PSD curve is strongly decreased
in the spatial frequency range of 0.086 to 34.7 μm−1 and the PSD deviations corresponding to
the turning marks are almost completely removed [Fig. 5(d)].

By contrast, these structures become more apparent if postbaking is applied [Fig. 5(c)]. Due
to a shrinkage of the thin layer during temperature treatment, the turning marks are transferred
into the negative photoresist. On the other hand, the granular structure after exposure is smoothed
during heating [see Figs. 5(b) and 5(c)]. This may be attributed to flowing of the polymer due to
structural reorganization already observed in Sec. 3.1.39

3.2 Reactive Ion Beam Etching of Negative Photoresist ma-N 2405 Thin
Films

The effect of ion beam irradiation on the resist layer is investigated with a special focus on the
surface evolution and the temporal stability of the removal process. For that reason, the process
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Fig. 5 AFM measurements (3 μm × 3 μm and 35 μm × 35 μm) of (a) RSA Al905 sample surface,
(b) additionally spin-coated with negative photoresist ma-N 2405, prebaked, and DUV exposed,
and (c) after subsequent postbaking at 150°C for 10 min. (d) PSD function calculated on the basis
of AFM measurements with scan sizes of 3 μm × 3 μm and 35 μm × 35 μm.
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time is stepwise increased. After each step, the surface roughness and the etch rate are examined
with respect to the increasing material removal. The ion beam etching experiments on ma-N
2405 are performed under equal ion beam process conditions with N2 operating gas on alumi-
num samples as summarized in Table 2.

Figure 6(a) shows AFMmeasurements of the photoresist layer at various etching depths. The
material removal, measured by optical thin film reflectometry, is defined as the difference
between the layer thickness before and after RIBE processing. To investigate the effect of the
ion beam machining on the surface roughness of the photoresist, the PSD function in the spatial
frequency range of 0.086 to 34.7 μm−1 is calculated [see Fig. 6(b)].

After 76-nm material removal, the formation of particles and a granular structure with a few
nanometers in diameter is observed [see Fig. 6(a)]. As a consequence, the PSD spectrum above
8 μm−1 spatial frequency is increased [see Fig. 6(b)]. The PSD deviation increases with increas-
ing etching depth. A contrary effect is observed in the spatial frequency range of 0.9 to 8 μm−1.
With increasing material removal, the PSD curve is decreased. The differences in height of the
initial surface are perpetually flattened [see Fig. 6(a)]. Between 0.5 and 0.9 μm−1, the PSD
curves merge. At spatial frequencies below 0.5 μm−1, the spectrum after 76 nm removal
decreases strongly and increases slightly again with further increasing material removal but
remains consistently below the initial value [see Fig. 6(b)]. The full range roughness calculated
in the spatial frequency range of 0.086 to 34.7 μm−1 is mainly preserved during RIBE machining
up to 450 nm depth [see Fig. 6(b) inset].

This effect has also been observed in reactive ion etching (RIE) experiments using CHF3
processing gas performed by Schuster et al.39 The AFM images after RIE machining with
CHF3 process gas exhibit a similar granular structure. Simultaneously, a smoothing over the
whole measured area of 3 μm × 3 μm is observed.

For further analysis, XPS measurements are performed on the untreated photoresist layer and
after 76 nm material removal as depicted in Fig. 6. During RIBE machining, the top layer of
photoresist surface is highly modified. According to the results obtained from XPS measure-
ments, CNx groups are formed and concurrently COx groups are remarkably reduced. In addi-
tion, carbon single bonds are partially reorganized to graphitized carbon.

Referring to Sumiya et al.,37 the schematic of a two-stage photoresist degradation mechanism
is consistent with our observations. A certain roughness is initially introduced and constantly
transferred into the underlying material during subsequent etching [see Fig. 6(a)]. In the first
stage, a modified layer is formed on top of the photoresist surface. During that period, selective
oxygen removal occurs and a graphitic layer is formed. The character of the roughness develops
during this time period. The increase in microroughness above 8 μm−1 spatial frequency
observed in the PSD function after 76 nm material removal may originate from this degradation
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Fig. 6 (a) AFM measurements (3 μm × 3 μm) of negative photoresist ma-N 2405 before and after
RIBE (N2 operating gas, 1.2 keV) with machining depths of 76, 230, and 450 nm. (b) PSD functions
calculated on the basis of the AFM measurements with scan sizes of 3 μm × 3 μm,
10 μm × 10 μm, and 35 μm × 35 μm. The inlet represents the mainly constant full range rough-
ness dependent on different etch depths.
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mechanism. In the second period, a steady-state etching takes place where the spatial distribution
of the surface roughness changes little.

The volume etch rate R of the photoresist layer after nitrogen processing at various etch
depths d depicted in Fig. 6 is calculated in consideration of the deterministic scan parameters
as line velocity vy, line feed Δx, and scan repetition count Nrep

EQ-TARGET;temp:intralink-;e001;116;675R ¼ d · vy · Δx
Nrep

: (1)

The results are illustrated in Fig. 7 (black curve). The averaged volume etch rate of ma-N
2405 after postbaking at 150°C is 1.10 mm3∕h. As an alternative to the usage of postbaking but
also with improved surface qualities after ion irradiation, an increased prebaking time of 5 min at
90°C and subsequent DUV exposure can be applied.

The orange curve in Fig. 7 depicts the ion beam etch rates of photoresist layers prepared in
this way. However, the missing postbake results in an increased etch depth of 90 nm and, there-
fore, a higher etch rate of 1.3 mm3∕h conducted under equal ion beam process conditions. With
increasing machining depth up to 300 nm, the etch rate approaches similar steady-state condi-
tions. The different depth-dependent etching behaviors may be due to remaining organic solvent
in the thin photoresist layer.

According to Brinke et al.,40 solvent molecules can act as plasticizers, lowering the glass
transition temperature, and thermal flow temperature of the resist film. The higher amount of
organic solvent in the partially cross-linked negative photoresist enables polymer chain motion
and thermoplastic flow. With increasing material removal, the remaining organic solvent
evolves, resulting in the same steady-state etching conditions as the postbaked layer.

Controllable process parameters during the planarization process require no entrapped
organic solvent since the volume etch rate of the negative photoresist after postbaking at
150°C for 2 min is nearly constant for all etching depths up to 450 nm. Furthermore, the etch
rate is independent of the atmosphere of the postbaking conditions. The experiments are repeated
on a photoresist layer postbaked in a vacuum oven at 150°C for 2 min and reveal similar results.

Our results conclude that sufficient pretreatment of the negative photoresist ma-N 2405
including exposure in DUV and heating prevents the polymer from degradation and, therefore,
avoids an increase in roughness during ion beam irradiation. Since postbaking at temperatures
above 150°C has no improvement on surface roughness or etching resistance, it is not necessary
to use elevated temperatures. Furthermore, the resist thickness decreases rapidly with increasing
postbaking temperature, and photoresist degradation occurs. Additionally, based on TG/MS and
TGA measurements, the remaining organic solvent is removed during postbaking at 150°C.
Surface roughness after postbaking at 150°C is preserved during ion beam irradiation with nitro-
gen process gas. Another advantage is the nearly constant etch rate of different machining depths
from 76 up to 450 nm (see Fig. 7) independent of the atmosphere of postbaking. In the following,
the photoresist preparation includes spin coating, prebaking at 90°C, DUV exposure, and
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Fig. 7 RIBE volume etch rate of negative photoresist ma-N 2405 depending on etching depths.
For comparison, two variations in photoresist processing are focused: photoresist postbaking at
150°C for 2 min (black) and without postbaking but longer prebake at 90°C for 5 min (orange).
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postbaking at 150°C unless specified otherwise. Hereby prepared photoresist layers are referred
to as initial photoresist surface.

3.3 Effect of Reactive Ion Beam Etching on Optical RSA Al905 and
RSA Al6061 Surfaces

Direct RIBE machining is performed on both aluminum substrate materials with a special focus
on roughness evolution and local composition distribution during the etching process.
Additionally, the respective etch rates are calculated to determine the ratio of the etch rates
of aluminum substrate and photoresist layer, defined as selectivity. The ion beam process param-
eter and corresponding etch rates of aluminum disc samples RSA Al905 and RSA Al6061 are
summarized in Table 2. Since the etch rate of ma-N 2405 is nearly constant and surface rough-
ness is preserved during RIBE up to 450 nm etching depths, preconditions for IBP are encour-
aging. To investigate the capability of planarization process on aluminum surfaces, the following
approach is chosen. First, the surface roughness of untreated RSA Al6061 and RSA Al905 is
determined by AFM and WLI measurements. Direct aluminum machining experiments on both
aluminum alloys are performed to calculate the volume etch rate and consequently the selec-
tivity. The RIBE process parameters are summarized in Table 2. The effect of ion beam irra-
diation on aluminum is investigated with a focus on roughness evolution. Finally, IBP at normal
ion incidence angle on RSA Al905 and RSA Al6061 with the aid of ma-N 2405 is investigated
with a spatial focus on roughness evolution and local composition distribution after RIBE
machining.

Rapid solidified aluminum RSA Al6061 alloy with a smaller grain size compared with con-
ventional Al6061 alloys as well as RSA Al905 is tested. Figure 8 shows AFM topography
images and the calculated PSD function of RSA Al905 and RSA Al6061 samples before and
after RIBE processing. For a more detailed discussion, the surface roughness is segmented into
waviness/roughness and microroughness applying a cut-off frequency of 1.7 μm−1. The corre-
sponding spatial wavelength ranges are marked in Fig. 8(b).

The surface topography of RSA Al905 is generally dominated by 2.4 μm spaced turning
marks with an initial height of ð23.3� 1.9Þ nm caused by SPDT corresponding to the strong
deviation in the PSD spectra at 0.4 μm−1 with several superstructures at 0.8, 1.2, 1.6, 2.0, and
2.4 μm−1 [Fig. 8(b)]. These superstructures present in the PSD spectra result from multiple-peak
structure of the turning marks on the untreated aluminum surface, which might indicate an
imperfection in the cutting tool shape. Additionally, a bump in the PSD spectra at about
0.006 μm−1 corresponds to 167 μm spaced periodicity results from chatter, i.e., mechanical
vibrations of the SPDT machine.

During machining, the PSD curve is increased in the short-wavelength range above
2.6 μm−1. Surface bumps and pits are formed, resulting in a slightly increased microroughness
of ð4.2� 0.5Þ nm rms compared with ð3.8� 1.2Þ nm rms before RIBE machining [Fig. 8(a)].
Below 1.5 μm−1, the PSD deviation after RIBE is almost negligible. The calculated roughness of
ð9.9� 2.3Þ nm rms in the spatial frequency range of 0.0024 to 34.6 μm−1 is largely preserved
during processing.

The roughness preservation during RIBE machining of RSA Al905 is convenient for the
planarization process since direct aluminum etching takes place after photoresist removal within
the interface of planarization layer and aluminum. The turning marks are slightly reduced in
height to ð16.3� 1.3Þ nm but the formation of etch pits with sizes in the submicrometer range
is observed [Fig. 8(a)].

The surface of RSA Al6061 is also characterized by periodic pattern marks caused by SPDT
with corresponding PSD deviations (see Fig. 8). Dominant are ∼1.3 μm spaced turning marks
with a few nanometer in depth. A further periodicity corresponding to 17 μm spatial wavelength
is found in the PSD function, which is a result of machine vibrations during SPDT.

By contrast, ion beam irradiation of RSA Al6061 causes surface degradation. Consequently,
the PSD spectrum is significantly increased in the spatial frequency range of above 0.15 μm−1.
Below 0.15 μm−1, both PSD curves merge [see Fig. 8(b)].

The microroughness is increased to ð3.4� 1.0Þ nm rms after machining compared with the
initial value of ð1.3� 0.6Þ nm rms. The largest deviation of ∼1 to 1.5 orders of magnitude is
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obtained in the high-frequency range above 10 μm−1, which is a result of the formation of
a granular structure with sizes below 100 nm.

In the range between 1 and 10 μm−1, there is a deviation in the order of 0.5 to 1 dec resulting
from pit and particle formation with individual sizes of several hundred nanometers. As a con-
sequence, the waviness/roughness increases to ð5.0� 0.6Þ nm rms compared with the initial
value of ð4.7� 0.8Þ nm rms. The turning marks are still apparent with smoothed edges but com-
parable depth. The calculated full range roughness of the untreated RSA Al6061 sample has
a value of ð4.9� 0.9Þ nm rms and is increased to ð6.1� 1.1Þ nm rms after machining.

According to our recent study,13 no roughening is obtained during RIBE machining using
the oxygen process gas of aluminum alloys RSA Al905; the represented results also obtain
a preservation of initial surface roughness during RIBE processing with nitrogen process gas.

To further analyze the effect of RSA Al6061 surface degradation, the local composition dis-
tribution after RIBE machining is monitored by SEM-EDX mapping (see Fig. 9).

TOF-SIMS experiments performed in positive mode reveal the following constituents
beyond the surface region: The used RSA Al6061 alloy contains Mg, Fe, Mn, Cr, Si, Ti,
Cu, Ni, and Zr portions in the Al base material. The particles formed on the surface of the
RSA Al6061 sample after RIBE machining are mainly due to chromium and silicon fractions.
Significant silicon and magnesia fractions are found together within the etch pits. Iron and tita-
nium fractions are also detected on the surface. The surface degradation of RSA Al6061 after
RIBE machining with oxygen show similar results as previously reported.13 Due to the inho-
mogeneous matrix structure of RSA Al6061 alloy, the formation of pits is promoted, resulting
from preferential sputter erosion.

3.4 Ion Beam Planarization of Optical Aluminum Surfaces

In this section, IBP and RIBE finishing of optical RSA Al905 and RSA Al6061 aluminum
surfaces is described. Preparation parameters of photoresist layers as described in Sec. 3.1 are
applied. Surface topography evolution during processing is discussed with special regard to turn-
ing mark structure reduction. Ion beam process parameters summarized in Table 2 are also
executed for the following IBP experiments.

Hereafter, IBP of RSA Al905 and RSA Al6061 are elucidated. The maximum etch depth was
chosen with respect to the initial photoresist thickness of about 500 nm and the height of the
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Fig. 8 (a) AFM measurements of RSA Al905 and RSA Al6061 (35 μm × 35 μm) samples before
(top) and after (bottom) RIBE machining with nitrogen process gas at normal angle. The etching
depths for both process runs were 300 nm for RSA Al905 and 230 nm for RSA Al6061. The inlets in
AFM measurements of RSA Al6061 show the roughness evolution of surface topography on
1.5 μm × 1.5 μm scan size. The z range of the inlets is 20 nm. (b) PSD function calculated on
the basis of AFM measurements with scan sizes of 3 μm × 3 μm and 35 μm × 35 μm and WLI
measurements with image sizes of 1230 μm × 925 μm and 624 μm × 467 μm.
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turning mark structures. Hence, a maximum aluminum removal of 50 nm was not exceeded
during processing. The ion beam process parameter for the following IBP and RIBE finishing
experiments are summarized in Table 2. For a more detailed discussion of turning mark evo-
lution, averaged cross section profiles are generated by defining an average area for the cross
section line. Within this area, about 300 parallel cross sections will be averaged using SPIP™
software.22

3.4.1 Ion beam planarization of optical RSA Al905 surfaces

Hereafter, the untreated diamond turned aluminum alloy is referred to as untreated surface and
the surfaces after the first and second IBP process are referred to as first run and second run,
respectively. The topography measurements in Fig. 10(a) represent the RSA Al905 initial
aluminum surface.

Figures 10(b) and 10(c) represent the surfaces after first run and second run IBP process,
respectively. For more detailed discussion, the PSD distribution of the initial surface and after the
first and second runs on the basis of AFM and WLI measurements is calculated [see Fig. 11(a)].
The dashed lines in the AFM images represent the positions for the midlines of the cross sections
profiles illustrated in Fig. 11(b).

Before RIBE machining, the surface is dominated by a periodic waviness pattern caused by
the SPDT tool, including turning marks with a height of ð23.6� 0.8Þ nm on average and mid-
spatial frequency errors with a spatial wavelength of ∼220 μm [see Fig. 10(a), WLI image].
By way of illustration, in the following conclusions about the roughness evolution during IBP,
relevant turning mark spaces and etch pit surface density are marked in Fig. 10.

Although the mid-spatial frequency errors are not fully embedded by the thin photoresist
layer, a distinct improvement of these surface errors during IBP is barely to be expected.
Hence, the 220-μm spaced surface errors are slightly smoothed during processing but remain
almost unchanged [see Figs. 10(a)–10(c), WLI images]. As a result, the bump in the PSD
spectrum in the spatial frequency range of 0.0024 to 0.007 μm−1 is barely reduced after one
planarization run [Fig. 11(a)]. The deviation after the second planarization run is negligible.

The turning marks located in the high-spatial frequency range are characterized by a period of
3 μm with several superstructures of 1.4, 1, and 0.7 μm. These turning marks are considerably
reduced in height to an average height of ð7.9� 0.7Þ nm with smoothed edges after the first run.
As a consequence, the strong deviations in the spatial frequency range of 5 to 0.5 μm−1 with
several maxima at 0.3, 0.7, 1, and 1.4 μm−1 are significantly decreased [see Fig. 11(a)].

The PSD deviation at 1.4 μm−1 reflecting one superstructure is almost completely removed.
Additionally, the formation of single-etch pits with sizes of a few hundred nanometer and par-
ticles with a mean diameter of 90 nm is observed [see Fig. 10(b)]. The turning marks are further
reduced to an averaged height of ð4.2� 0.5Þ nm after the second run but the formation of etch
pits is increased with slightly enhanced diameters in the submicrometer range [see Fig. 10(c)].

1 µm

1 µm

4 µm

Fig. 9 SEM and SEM-EDX mapping image of a nitrogen processed aluminum RSA Al6061
sample after 300-nm etch depth revealing mainly Si and Mg precipitates within the etch pits.
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Fig. 10 WLI (5× objective) and AFM (3 μm × 3 μm and 35 μm × 35 μm) measurements of surface
topography of RSA Al905 sample of the (a) initial surface and after (b) the first run and (c) second
run RIBE planarization. The image height scale is indicated by the z value.
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For a more detailed analysis of the roughness evolution with a special focus on the 3-μm
spaced turning marks, cross section profiles of the RSA Al905 sample depicted in Fig. 10 are
investigated. Fig. 11(b) shows an averaged cross section profile of the untreated surface and after
the first and second run, respectively. During the first run, the turning marks are reduced in height
by about 66.5% with smoothed edges.

Due to a selectivity of 0.52 of the first planarization run, the height reduction is indeed larger
than expected. The reduction of the turning mark height may additionally be enhanced by the ion
incidence angle dependent sputter yield as a function of the local surface error slope. Turning
marks with high slope border areas result in locally different incidence angles of the incoming
ions. Due to the angle dependence of the sputter yield, sputter erosion increases with an increas-
ing angle of incidence to a specific maximum. Consequently, the roughness features with high
slope border areas may be gradually smoothed.41–46

During the second run, a further reduction of 44.5% in turning mark height is observed,
correlating to a selectivity of 0.55. After the second run, the waviness/roughness value is slightly
reduced compared with the first run. The turning marks are further reduced in height, leading to a
roughness reduction. Counteracting etch pit formation and an increased formation of statistically
distributed particles on the surface [see Fig. 10(c)] may lead to the reduced roughness value. The
effect of the planarization process on RSA Al905 surface roughness segmented into waviness
and microroughness in detail is summarized in Table 4, and the corresponding spatial wave-
length ranges are marked in the PSD function in Fig. 11(a).

As a summary of the planarization behavior of RSA Al905 surfaces by RIBE with 1.2 keV
nitrogen ions, the turning marks are successfully reduced by 82% overall after two planarization
runs. By contrast, the microroughness is increased after the first run with roughness values of
∼2.2 nm rms for the initial surface to 3.2 nm rms after the first run and 3.3 nm rms after the
second run [see Figs. 10(a)–10(c)]. As a consequence, the PSD spectrum is increased in the
spatial frequency range above 1.6 μm−1. A maximum deviation of about 1 dec is obtained, cor-
relating to a formation of a granular structure with several distributed particles. The microrough-
ness remains unchanged after the second run compared with the first run [see Figs. 10 and 11(a)].

For further analysis of the particulates that are observed on RSA Al905 after the IBP process,
the local composition distribution after RIBE machining was monitored by SEM-EDX mapping
(see Fig. 12).

Table 4 Surface roughness values of aluminum RSA Al905 and RSA Al6061 divided into
waviness/roughness and microroughness corresponding to the spatial frequency range of
0.0024 to 1.7 μm−1 and 1.7 to 34.7 μm−1, respectively, and the full range roughness.

Microroughness
(nm rms)

Roughnessþ
waviness (nm rms)

Full range
(nm rms)

Turning
mark height

(nm)

RSA Al905

Untreated 2.2� 1.2 9.5� 1.4 9.7� 1.6 23.6� 0.8

RIBE planarization First run N2 3.2� 0.3 5.9� 0.7 6.8� 0.8 7.9� 1.3

Second run N2 3.3� 0.3 5.1� 1.1 5.9� 1.1 4.3� 0.5

RIBE finishing O2 2.2� 0.6 5.2� 0.9 5.7� 1.1 6.6� 0.6

RSA Al6061

Untreated 1.3� 0.6 4.7� 0.8 4.9� 0.9 2.9� 0.3

RIBE planarization First run N2 2.6� 0.2 4.2� 0.6 4.9� 0.7 1.8� 0.3

Second run N2 2.5� 0.3 3.2� 0.6 4.0� 0.7 <1

RIBE finishing O2 1.4� 0.2 3.3� 0.5 3.6� 0.6 <1
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TOF-SIMS measurements performed in positive mode reveal that the RSA Al905 alloy
material mainly contains Ti, Ni, Cu, Ga, Fe, Mn, and Mg and portions of Cd, Mo, Zn, Zr,
Cr, and Si in the aluminum base. After the first processing run, Cu and Ni precipitates, in par-
ticular, can be observed irregularly distributed over the aluminum surface. The particle formation
is assumed to result from the reduced sputter erosion of these precipitates compared with
aluminum.

3.4.2 Ion beam planarization of optical RSA Al6061 surfaces

The same process is also applied on RSA Al6061. The surface topography measurements in
Fig. 13(a) represent the untreated RSA Al6061 sample. Figures 13(b) and 13(c) represent the
surface after the first and second planarization runs, respectively. The PSD function distribution
of the initial surface and after each planarization run is represented in Fig. 14(a). The positions
for the midlines of the cross section profiles illustrated in Fig. 14(b) are represented by dashed
lines in the AFM images in Fig. 13.

10 µm

Fig. 12 SEM and SEM-EDX mapping image of an aluminum RSA Al905 alloy after the first run of
IBP revealing significant Cu and Ni precipitations.
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Fig. 13 WLI (10× objective) and AFM (3 μm × 3 μm and 35 μm × 35 μm) measurements of RSA
Al6061 sample (a) before and (b) after the first run and (c) second run RIBE planarization. The
image height scale is indicated by the z value.
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The untreated surface is dominated by ∼1.3 μm spaced turning marks with only a few nano-
meter in depth corresponding to the PSD deviations with maxima at 0.8, 1.2, and 1.6 μm−1.
Furthermore, larger spaced turning marks with several nanometers in height correlate to the
PSD deviations in the spatial frequency range of ∼0.03 to 0.1 μm−1. The initial aluminum
surface is dominated by turning marks with an average height of ð2.9� 0.3Þ nm.

After the first planarization run, the formation of a few etch pits concentrated within the
turning marks with diameter of a few micrometer is observed. After the second run, the etch
pit formation is increased with similar mean diameter [see Figs. 13(b) and 13(c)].

The turning marks are reduced in height to an averaged value of ð1.8� 0.3Þ nm after the first
run. As a consequence, the corresponding PSD deviations in the spatial frequency range of
0.7 to 1.8 μm−1 are decreased [Fig. 14(a)]. The full range roughness of ð4.9� 0.9Þ nm rms
remains unchanged after the first planarization run. This is due to the reduction of the waviness
to ð4.2� 0.6Þ nm rms and a contrary increase in microroughness to ð2.6� 0.2Þ nm rms.

After the second planarization run, the turning marks are strongly reduced to height values in
the subnanometer range. Hence, the PSD deviation at 0.8 μm−1 is remarkably decreased [see
Fig. 14(a)]. Additionally, the PSD deviations at 1.2 and 1.6 μm−1 almost disappeared after the
second planarization run. The PSD spectrum in the spatial frequency range of 0.01 to 1.6 μm−1

decreases. As a consequence, the waviness is remarkably reduced to ð3.2� 0.6Þ nm.
Figure 14(b) shows an averaged cross section profile of the untreated surface and after the first
and second runs, respectively. The 1.25-μm spaced turning marks with ð2.9� 0.3Þ nm height on
RSA Al6061 are almost completely removed after two planarization runs.

A maximum deviation of about 1 dec is obtained in the spatial frequency range above
10 μm−1 correlating to the formation of a granular structure [see Figs. 13 and 14(a)]. The same
effect has been observed after the planarization process of RSA Al905 with nitrogen process gas.
The grain structure of RSA Al6061 represented in AFM measurements with the small scan size
of 3 μm × 3 μm is still apparent after the second planarization run. The small particles seem to
accumulate together at the grain boundaries. The particles formed after the second run are
increased in size and some consist of smaller particles clumped together, resulting in several
hundred nanometer size. The effect of the planarization process on RSA Al6061 surface
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Fig. 14 (a) PSD spectra before and after both RIBE planarization runs on RSA Al6061 sample.
(b) Averaged cross section profiles of aluminum RSA Al6061 sample calculated on the basis of
AFM images of the untreated surface (black), after the first run (orange) and the second run (blue).
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roughness segmented into waviness/roughness and microroughness in detail is summarized in
Table 4 and the corresponding spatial wavelength ranges are marked in the PSD function in
Fig. 14(a).

As a summary of the planarization behavior of RSA Al6061 surfaces by RIBE with 1.2 keV
nitrogen ions, the turning marks are also successfully reduced in a comparable ratio as already
observed during IBP of RSA Al905. However, the turning marks present on the untreated RSA
Al6061 surface were already smaller in height. Consequently, these structures are almost
completely removed during processing. In consideration of the different surface qualities of
the aluminum samples used for IBP investigations, comparable results were obtained.

3.4.3 RIBE finishing of optical aluminum surfaces after planarization

After N2 planarization, the reflectivity of both aluminum surfaces is reduced. The initial alu-
minum surface exhibiting a native oxide layer shows a high reflectivity over a broad spatial
wavelength range. Additionally, the microroughness of both aluminum materials is increased
after nitrogen machining and a granular structure with similar particle sizes is formed. As a result
of this microroughness, the surface exhibits a diffusive shine. For applications in the VIS and UV
spectral range, a further reduction of the increased microroughness is a prerequisite. Thus
a subsequent ion beam machining with 1.5 keV oxygen ions is applied on the two samples
depicted in Figs. 10 and 13(c). The material removal is chosen as relatively small, below 10 nm,
to avoid inhomogeneous matrix structure effects. The effect of the subsequent oxygen machining
on surface roughness of RSA Al905 and RSA Al6061 is summarized in Table 4 and the
corresponding ion beam process parameter in Table 2.

The AFMmeasurements in Fig. 15(b) represent the RSA Al905 initial surface, after two runs
IBP, and after a subsequent oxygen process. After RIBE machining with oxygen process gas, the
turning marks corresponding to the deviations in the spatial frequency range of 5 to 0.5 μm−1

remain almost unchanged [see Fig. 15(a)].
However, their height is slightly increased to ð6.6� 0.6Þ nm after the subsequent machining

with oxygen process gas. No further etch pit formation can be observed since the etch depth is
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Fig. 15 (a) PSD function of the untreated RSA Al905 surface, after the second planarization run
and after the subsequent oxygen process. The PSD functions are calculated on the basis of AFM
measurements with scan sizes of 3 μm × 3 μm and 35 μm × 35 μm and WLI measurements with
image sizes of 1230 μm × 925 μm and 624 μm × 467 μm. (b) AFM measurements (3 μm × 3 μm
and 35 μm × 35 μm) of the untreated RSA Al905 surface (top), after the second planarization run
(middle), and after the subsequent oxygen process (bottom).
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chosen to be small. Hence, the roughness value is kept constant after oxygen machining. On the
contrary, the microroughness is remarkably reduced to a value of 2.2 nm rms. Consequently, the
PSD spectrum is decreased in the spatial frequency range above 2 μm−1 to a maximum 1.5 dec
[see Fig. 15(a)]. Above 10 μm−1 spatial frequency, the PSD curve is even below the untreated
surface.

The particles observed after two planarization runs are remarkably reduced after oxygen
machining. Additionally, the granular structure that occurred after nitrogen machining is
removed, resulting in the large decrease in the high-spatial frequency range (see Fig. 15).
Consequently, the full range roughness decreases to ð5.7� 1.1Þ nm rms.

During subsequent oxygen machining, the material removal of a few nanometer is sufficient
for eliminating the granular structure formed after IBP. Therefore, we assume that a modified
layer may be formed on the aluminum surface after nitrogen machining. To analyze the effect in
detail, the chemical surface modification after IBP and subsequent oxygen machining is ana-
lyzed by TOF-SIMS experiments.

A native oxide layer is formed instantly during the contact of pure aluminum surface with air.
Since the samples are exposed to air after machining, the existence of a surface oxide layer is
expected on all samples. The AlO− signal is used to illustrate the extent of the surface oxide
layer. In addition, the AlN− signal is used to illustrate the extent of a nitride surface layer after
planarization with nitrogen process gas (see Fig. 16).

The oxide and nitride layer thickness is ascertained as the distance of the surface to the depth,
where the signal is decreased to its half maximum value. After two planarization runs, a 15.3-nm
thick nitride layer is formed on the aluminum surface overlapping with an ∼7.9-nm thick oxide
layer revealed on the surface. This oxide layer may be due to the formation of a native oxide layer
when aluminum is exposed to air after processing. Note that these layers are not independently
present on the surface but exist in an oxynitride surface layer with 13.3 nm in thickness.

After subsequent oxygen machining, the depth of the oxide layer is significantly enlarged to
18.5 nm overlapping with a 16.8-nm-thick nitride layer. The oxynitride layer is increased to
15.7 nm. Consequently, an oxidation process of the surface during subsequent RIBE finishing
with oxygen operating gas has to be considered.

A similar effect has been observed in direct aluminum machining with oxygen process gas.13

The oxide layer formed on the aluminum surface after 380 nm machining has a similar depth.
Oxygen machining is also performed on RSA Al6061 after two runs IBP. The AFM mea-

surements in Fig. 17(b) represent the initial surface, after two runs IBP, and after a subsequent
oxygen process.
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Fig. 16 TOF-SIMS depth profiles of RSA Al905 after two planarization runs using nitrogen proc-
ess gas and after the subsequent oxygen machining. (a) The extent of a nitride surface layer is
represented by the AlN− signal. (b) The surface oxide layer is represented by the AlO− signal.
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After RIBE machining with oxygen process gas, the roughness value remains unchanged.
By contrast, the formation of etch pits is increased with sizes up to several hundred nanometers
[see Fig. 17(b)]. They seem to preferentially order at the grain boundaries of the RSA Al6061
material. This observation is similar to the recently reported work13 in which a series of ordered
etch pits is formed after 400 nm material removal with oxygen process gas. Due to the low
machining depth in these experiments, the etch pit formation is comparably sparse.

By contrast, the microroughness is remarkably decreased after the oxygen process to a value
of 1.4 nm rms. As a consequence, the PSD spectrum is remarkably decreased in the spatial
frequency range above 3 μm−1 to a maximum 2 dec. Above 10 μm−1, the PSD curve is even
below the initial surface roughness [see Fig. 17(a)]. The granular structure is removed after sub-
sequent oxygen machining, but single particles in the submicrometer range are still apparent
after oxygen machining. In summary, the full range roughness decreases to ð3.6� 0.6Þ nm rms.

1 µm

(a) (b)

10 µm

0

z

M
ea

n
is

ot
ro

pi
c

P
S

D
 (

nm
4 )

Spatial frequency (µm–1)

Waviness / roughness Microroughness

Initial

N2 process (2nd run)

O2 process

z = 20 nm z = 30 nm

10–3 10–2 10–1 100 101
10–1

101

103

105

107

109

1011

WLI

Untreated
N2 process (2nd run)
O2process

AFM ( 3 µm x 3 µm)

AFM ( 35 µm x 35 µm)

1 µm

1 µm

10 µm

10 µm

Fig. 17 (a) PSD function of the untreated RSA Al6061 surface, after the second planarization run,
and after the subsequent oxygen process. The PSD functions are calculated on the basis of
AFM measurements (3 μm × 3 μm and 35 μm × 35 μm) and WLI measurements with image
sizes of 1230 μm × 925 μm and 624 μm × 467 μm. (b) AFM measurements of RSA Al6061
(3 μm × 3 μm and 35 μm × 35 μm) initial surface (top), after the second planarization run (middle),
and after the subsequent oxygen process (bottom).
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Fig. 18 (a) SEM and SEM-EDX analysis of aluminum RSA Al6061 alloy after two runs of IBP and
(b) after subsequent oxygen machining revealing significant Mg and Si precipitations within the
etch pits and particle formation due to Si, Cr, and Fe. No distinct difference in local composition
distribution was observed before and after RIBE machining with oxygen process gas.
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The local composition distribution after oxygen processing is monitored by SEM-EDX map-
ping (see Fig. 18). As a remarkable result, Mg and Si fractions are found together within the etch
pits after IBP and subsequent oxygen processing. The particles formed on the surface are mainly
due to Si, Cr, Cu, and Fe. Similar observations are made after direct aluminum machining with
nitrogen process gas after 300 nm material removal (see Fig. 9).

The formation of etch pits after nitrogen processing of the sample depicted in Figs. 8 and 13
is comparably low despite the strikingly decreased material removal during oxygen machining.
We assume that Mg and Si fractions are preferentially eroded during oxygen machining, result-
ing in an increased pit formation.

4 Conclusions

Our results on IBP of aluminum surfaces are based upon a two-step process including IBP using
nitrogen process gas and direct aluminum machining with oxygen process gas. In particular, we
examined a preparation sequence for negative photoresist ma-N 2405 with the aid of a plana-
rization layer to smooth technical aluminum surfaces. The prebaking is necessary to evaporate
the majority of organic solvent, and DUV exposure initiates the cross-linking of phenolic resin.
Postbaking at 150°C for 6 min on aluminum surfaces and 2 min on thin silicon wafer increases
the thermal stability and etch resistance of the photoresist to realize steady-state conditions
during IBP. The etch rate is kept constant and the initial smooth surface of the photoresist layer
is preserved during machining. Postbaking at temperatures ≥300°C increases the surface rough-
ness due to photoresist degradation caused by thermal decomposition.

During IBP, a highly modified CNx rich graphitized layer is formed on top of the photoresist
with a certain size of microroughness initially introduced after 76 nm material removal. With
increasing machining depth, the spatial distribution of the surface roughness changes little.
Hence, the smooth surface of the initial photoresist layer is mainly preserved during IBP, and
a steady-state etch rate is reached.

PSD analysis shows that the surface roughness of technical aluminum RSA Al905 is
decreased in the spatial frequency range of ∼0.03 to 2 μm−1 after two planarization runs and
the turning mark height is successfully reduced by 82%. The microroughness is increased during
the first IBP run and is kept steady-state during the second planarization run. The precipitate
structures within the aluminum base material and the formation of a 15.3-nm-thick nitride
surface layer may be a key contribution for the increase in microroughness during nitrogen
machining. The turning marks of RSA Al6061 are similarly strongly reduced in height to values
in the subnanometer range, indicating comparable improvement. The surface roughness is
decreased in the spatial frequency range of 0.01 to 1.6 μm−1. The microroughness is increased
comparably, showing the same granular like structure after machining.

An improvement of the microroughness of RSA Al905 and RSA Al6061 was found for
a subsequent oxygen process. The native oxide layer is enlarged during RIBE machining with
oxygen operating gas to about 18 nm thickness. As a consequence of the finishing process, the
microroughness is remarkably decreased to 1.4 nm rms of RSA Al6061 and 2.2 nm rms of RSA
Al905 surface while preserving the improved waviness and roughness during IBP with N2 operat-
ing gas. RSA Al905 exhibits less etch pit formation than RSA Al6061 during oxygen machining.

In addition to the RIBE-based surface figuring technique that preserves the initial roughness
during machining,13 this promising technology enables the smoothing of high-spatial frequency
errors of single-point diamond turned aluminum alloys while preserving or even improving the
initial microroughness.

The two-step process was applied on flat surfaces during the present study. However, the
process is not limited to flat surfaces but can also be applied to curved surfaces. For IBP inves-
tigations, a five-axis motion system was used, which allows the adjusting of the sample to the ion
source in a way that the ion beam incidence angle is continuously normal to the sample surface.
However, a further optimization of the photoresist application procedure is necessary since the
applied spin-coating within the present study might be limited due to the viscosity of the plana-
rizing layer. For the plane transfer, a constant layer thickness over the entire surface is necessary,
which could be achieved with a spray-coating process.
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