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Abstract. The stations of the mid-frequency aperture array (MFAA) envisaged for the second
phase of the Square Kilometer Array (SKA) are expected to consist of order 103 to 104 receive
paths. This will make calibration procedures based on the array covariance matrix computation-
ally expensive. Recently, self-holography (SH) was proposed to overcome this issue. This
method assumes that the signal from the chosen calibration source can be sufficiently well iso-
lated. We study the signal-to-interference ratio (SIR) of the most suitable calibration source over
a sidereal day for a representative MFAA station located on the SKA site in South Africa. We
find that an SIR of 20 dB or higher is achievable over (most of) a sidereal day. This is well above
the 11.5 dB needed to keep the beamformer efficiency after calibration above 99%. We therefore
conclude that SH is a promising candidate for station calibration of the MFAA stations. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution
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1 Introduction

The Square Kilometer Array (SKA) science book1 provides a broad overview of the science
enabled by the SKA. These science cases include the Billion Galaxy HI Survey,2 studies of the
transient Universe,3 and the Search for Extraterrestrial Intelligence.4 For these ambitions, field of
view, sensitivity, and survey speed are key design parameters. As field of view is inherently
determined by the size of an individual receiving element, this has driven design studies toward
large-N interferometer arrays consisting of many small-diameter receivers. All-digital aperture
arrays are the extreme limit of this idea and offer several attractive features.

1. The individual antennas have a low directivity and can therefore effectively provide a
hemispheric field of view.

2. To mitigate the computational cost,5,6 the antennas can be grouped into subarrays or
stations, with signals that are beamformed to make the station act as a single receiving
element of the interferometer array.

3. As computing resources become more affordable, the compute platform can be upgraded
over time, allowing the telescope system to process an increasing number of beams and
thereby extending its field of view.7

However, as the size of the individual antennas scales proportional to the observed wave-
length, the number of receive paths involved rises sharply with frequency. With current tech-
nology, this makes aperture arrays viable up to L-band. For this reason, aperture arrays are
currently successfully operated at low observing frequencies as demonstrated by LOFAR8 and
MWA9 and by the development of the low-frequency instrument of the SKA (SKA-Low). As
aperture arrays at L-band frequencies are more challenging, they are part of the SKA observatory
development program toward the second phase in the life of the SKA.
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The stations of the mid-frequency aperture array (MFAA) are envisaged to operate in the 450-
to 1450-MHz range and to have order 103 to 104 receive paths.10 This will make standard cal-
ibration procedures based on the array covariance matrix11,12 computationally expensive. A new
technique dubbed self-holography (SH) was proposed to mitigate this issue using the correla-
tions between the signals from the individual receive paths with the signal from a single reference
beam pointed at a suitable calibration source.13 The error budget of this method has been care-
fully analyzed.14 SH was successfully demonstrated in practice on a LOFAR station14 and an
SKA-Low prototype station.15 The latter demonstration used a variation of the originally pro-
posed method in which signals beamformed toward a grid of pointing directions were correlated
with the reference beam signal. It was shown that these two approaches are, under certain con-
ditions, equivalent.16

In this paper, we use the analysis method developed earlier14 to assess the suitability of SH for
calibration of the MFAA stations using celestial continuum sources excluding the Sun over a
sidereal day. The Sun is excluded as it will likely be partially resolved on some baselines within
an MFAA station and exhibits variability with time. This implies that a different strategy needs to
be developed for daytime calibration, e.g., using satellite signals. Development of such a strategy
is considered to be outside the scope of this paper. For our analysis, we use the design of the
MFAA science demonstrator dubbed mid-frequency aperture array transient and intensity-
mapping system (MANTIS)10 and a realistic sky model derived from the National Radio
Astronomy Observatory Very Large Array Sky Survey (NVSS),17 the SUMSS,18 and the
Haslam map.19 We demonstrate that the proposed MANTIS stations are large enough to provide
sufficient spatial selectivity to isolate a suitable calibration source at any sidereal time when the
stations are located on the South-African SKA site.

This paper is organized as follows. In the next section, we provide an introduction to the SH
method and its error budget, the envisaged MANTIS system, and the required station calibration
accuracy. In Sec. 3, we describe how we obtained a realistic and complete sky model for the
purpose of our analysis. This model plays a key role in the simulations, described in Sec. 4, used
to determine the signal-to-interference ratio (SIR) of the available calibration sources, which is a
key parameter for determining the quality of the receive path gain estimates provided by SH. In
the final section, we discuss the results from the simulations and present our conclusions.

2 Preliminaries

2.1 Self-Holography

The holographic measurement technique20 is commonly used to assess the surface accuracy of
reflector antennas. The technique exploits the Fourier relation between the voltage response pat-
tern of an antenna and the electric field distribution in its aperture plane. The amplitude of the
voltage response pattern is measured by scanning the antenna under test over the direction of a
transmitter while the phase of the response pattern is measured using a second non-scanning
reference antenna. For an aperture array, the direction-independent gains of its receiving ele-
ments are the equivalent of the surface accuracy of a reflector antenna. Scanning the array under
test is done by forming a grid of beams around an isolated test source. Interestingly, such a beam
can also be the signal of an individual receive path in the array. Since the holographic meas-
urement is done using the array as both antenna under test and reference antenna, the name SH
was appropriately chosen.13

A key assumption in (self-)holography is that the reference antenna isolates the signal from
the source used for calibration perfectly from other signals received by the system. Even if we
assume that calibration is done at frequencies without radio frequency interference, suppression
of contaminating, or interfering, signals from sources other than the calibration source will not be
perfect in practice. This causes a bias in the SH measurements. This bias was carefully studied14

and was found to be inversely proportional to the SIR of the measurement, which is defined as

EQ-TARGET;temp:intralink-;e001;116;107SIR ¼ σcðP − 1Þ1⊘
����
X

i

σiðaiðaHi 1Þ − 1Þ
����: (1)
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Here σc is the power of the calibration source, σi is the power of the i’th interfering source, P
is the number of receive paths in the array, and the P-element vector ai contains phasors rep-
resenting the geometrical delay of the i’th interfering source for each receiving element with
respect to the phase reference point of the array. The symbol ⊘ denotes element-wise division,
and 1 denotes a vector filled with ones. This equation signifies that the SIR may vary across the
array due to unfortunate array and source geometries resulting in destructive interference of the
source signals on specific baselines. As an individual receiving element contributes to many
baselines in large arrays, the impact of unfortunate baselines either averages out in the case
of irregular arrays, as demonstrated in our previous study,14 or affects all elements in a similar
way in the case of a regular array layout. This observation allows us to average all elements of the
vector to obtain a single SIR value for the full array. In practice, this single SIR value provides a
good quality metric as the calibration errors found in simulated observations are inversely pro-
portional to the SIR.14

2.2 MANTIS

The MANTIS10 will be a science demonstrator for the SKA and is planned to be built at
the SKA site in South Africa among the existing SKA-Mid and MeerKAT systems. It will
serve as a reference for the science possibilities of a fully populated MFAA system, while
also providing insight on cost and technology performance. The MANTIS will integrate well
with the existing MeerKAT and SKA-Mid telescopes. For example, the wide field of view of
the MANTIS will enable the monitoring and detection of transient events that, once detected,
can be followed up by observations with the more sensitive MeerKAT and SKA-Mid
telescopes.

The theoretical capabilities of aperture arrays are very attractive for radio astronomy.
However, the system engineering team realized that some of these capabilities will be unreach-
able due cost scaling and limited available budgets. The MANTIS will therefore provide sci-
entists with a testbed from which budget-viable technology can be tested and optimized. The
lessons learned from this experiment will form an integral part of the definition and design of the
full MFAA system. Calibration of the MANTIS is a crucial aspect that will have to be studied in
detail to ensure that viable scaling can be done to a full MFAA system.

The exact specifications of the MANTIS are not yet finalized. However, the aim is to consider
a system that closely resembles an MFAA station. Based on this and the planned science cases,
the following preliminary specifications seem the most reasonable:10

• frequency range: 450 to 1450 MHz;

• collecting area: 1500 to 2500 m2;

• sensitivity: 38 to 63 m2∕K;
• field-of-view: 200 deg2 at 1 GHz;

• bandwidth: >500 MHz and

• transient buffering.

These specifications provide enough information to define a realistic receiver system to
assess the calibratability of such an array at a given frequency using SH. The only outstanding
aspect required to conduct the study is a realistic sky model. Section 3 discusses the steps that
were involved in deriving a sky model that is suitable for calculating the SIR in a computation-
ally tractable manner while representing the true sky realistically.

2.3 Required Station Calibration Accuracy

The key goal of station calibration is to characterize the individual receive paths and equalize
their differences so that a sufficiently high beamforming efficiency is achieved when pointing the
station. When the errors are represented as a complex-valued error with relative RMS magnitude
ϵ with respective to the magnitude of the complex-valued direction-independent receive path
gain, the beamformer efficiency is given by21
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EQ-TARGET;temp:intralink-;e002;116;735ηBF ¼ 1 − 2ϵ2: (2)

This result implies that a beamformer efficiency of 99% requires ϵ ≤ 7.1%, whereas a beam-
former efficiency of 98% requires ϵ ≤ 10%.

The RMS gain error introduced by ignoring the presence of interfering sources is inversely
proportional to the SIR with a proportionality constant of about unity.14 To achieve the 98%
beamformer efficiency, we thus need an SIR of at least 10 dB, while for 99% beamformer effi-
ciency, we require an SIR of 11.5 dB or higher.

3 Modeling the Sky

For our simulations, we need a sufficiently accurate model of the sky for which the SIR can be
evaluated in a reasonable amount of time. The Haslam map might seem an obvious choice for the
model since it covers the entire sky. However, modeling the entire sky using the Haslam map is
computationally expensive for an SIR analysis for MANTIS. Point source catalogs (PSCs) are a
logical alternative because they provide a comprehensive overview of the flux density distribu-
tion across the sky and are much easier to work with. However, individual PSCs do not cover the
entire sky. Moreover, to maximize the spectral accuracy of the sky model, it is important that a
chosen PSC has an observing frequency that is reasonably close to the operating band of the
MANTIS. These requirements, together with the geographical placement of the MANTIS, intro-
duced a unique modeling challenge.

The SUMSS source catalog compiled using the Molonglo Observatory Synthesis Telescope
(MOST) at 843 MHz18 is the only PSC for the southern hemisphere sky with an appropriate
observing frequency. The only drawback is that its coverage is limited to declinations
δ < −30 deg, which is only around half of the sky as seen from the geographical location
of MANTIS. Furthermore, Galactic latitudes −10 deg < b < 10 deg are unobserved, which
means that the Galactic plane (GP) is entirely omitted. This coverage issue can partially be
solved using the NVSS at 1400 MHz,17 which covers the entire sky north of δ ¼ −40 deg.
Coverage of the GP remains an issue, as can be seen from Fig. 1. However, it will be seen that
PSCs do not suffice to accurately model the GP anyway and that the Haslam map is needed.

The flux and positional uncertainties of the sources in PSCs are expected to have a negligible
impact on the accuracy of the SIR calculations in this analysis. It therefore seems reasonable to
directly combine the PSCs by only applying an appropriate spectral scaling. Figure 2 shows a
comparison of the flux of a number of common sources, before and after scaling those from the
NVSS from 1400 to 843 MHz using the spectral index (0.83) that was derived in an earlier
study.18 A close agreement is observed, which confirms that the scaling is done correctly.

In addition to the fact that the SUMSS catalog does not cover the GP region, the sky cannot
be accurately modeled with only PSCs due to the presence of diffuse emission, as can be clearly
seen in Fig. 3. The diffuse emission will make a relatively small contribution to the visibilities of
MANTIS, but it remains a source of interference when performing SH calibration and should
therefore be accounted for in our analysis. The Haslam map can be used to account for the diffuse
emission, but this should not result in taking into account the fluxes of point sources (PSs) twice.
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Fig. 1 PS positions from the NVSS and SUMSS catalogs for S > 1 Jy.
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A quick inspection of Fig. 3 shows that the highest concentration of diffuse emission is located
along the GP. We therefore modeled this region of the sky using the Haslam map, whereas the
rest of the sky is modeled using the PSCs.

The Haslam map is a brightness map in units of Kelvin. A conversion to an intensity map
(IM) with units of Jy/sr was therefore necessary before it could be combined with the PSCs. This
conversion was done using20

EQ-TARGET;temp:intralink-;e003;116;313TB ¼ c2S
2kbf2

¼ λ2S
2kb

: (3)

Next, a conversion to units of Jy/pixel was done by sampling the IM at a resolution com-
parable to the spatial resolution of MANTIS. Finally, the flux density was scaled to 843 MHz
using a spectral index of 0.55. If these conversions are done correctly, it is expected that there
will be a good flux density comparison with the PSs from the PSCs in regions containing very
little to zero diffuse emission. To test this, a collection of bright spots in the Haslam map in
isolated regions (far from the GP) were chosen for declinations δ < −40 deg for comparison
with PSs in the SUMSS catalog. In this way, only one frequency scaling factor (Haslam from
408 to 843 MHz) had to be taken into account as a factor impacting the accuracy of the com-
parison. Due to the superior resolution of the SUMSS, each bright spot (an apparent PS) in the
IM likely contains several SUMSS PSs. An effort was therefore made to only choose bright spots
that are represented by one or two PSs with flux densities that are much higher than the remain-
ing PSs in the bright sport. In this way, it could be assumed that the total flux (sum of the pixels)
of the bright spot will be dominated by the flux of the strongest PSs that it contains. The uncer-
tainty in the source parameters in both the IM and the PSC is inversely proportional to the flux
density, which further supports this methodology. The analysis for one of these sources is shown
in Fig. 4, in which close agreement between the total flux of the IM and SUMSS can be seen.
Analysis for other bright spots showed similar results, which confirms that the flux scaling in
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Fig. 3 Haslam 408-MHz all-sky brightness distribution atlas.
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Fig. 2 Fluxes of common PSs in the NVSS and SUMSS catalogs (a) before and (b) after scaling
NVSS flux from 1400 to 843 MHz using spectral index α ¼ 0.83.
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frequency of the IM is sufficiently accurate. The remaining differences can be attributed to
underlying imperfections such as the fitting techniques used in SUMSS and the fact that each
pixel in the IM contains a contribution from the flux of the rest of the sky (uncorrected for
sidelobe response). A similar analysis for regions in the GP showed a very large flux difference
between PSCs and the Haslam map, which was expected given the large concentration of diffuse
emission in that region.

We therefore concluded that an appropriate sky model can be constructed using the Haslam
map for the GP, i.e., for Galactic latitudes −10 deg < b < 10 deg, and the PSCs for the remain-
ing regions of the sky. In this way, the number of source components to be evaluated for our
analysis was kept tractable while the distribution of power across the sky is still accurately
represented.

4 Simulations

4.1 Simulated Array

The geographic coordinates of the array were assumed to be 30.72° S and 21.41° E. A square
regular array configuration was assumed with interelement spacing d ¼ λ∕2 at 1 GHz. To ensure
a collecting area of at least 1500 m2 at 1.45 MHz, 336 elements on a side of the array were
required, assuming an individual antenna directivity of 4.

The preliminary MANTIS specifications make no direct mention of subdividing the array
into tiles. However, they do give a minimum field-of-view specification of 200 square deg at
1 GHz. Assuming that the elements of a tile have a regular square layout with a spacing of λ∕2 at
1 GHz, 200 square deg corresponds to a maximum of 7 elements on a side of a tile (M ¼ 7). To
assess the effect of tile size, we studied tile sizes of M ¼ 1, M ¼ 2, and M ¼ 4. We assume
perfect beamforming at the tile level.

The embedded element patterns (EEPs) of the receiving elements were assumed to be a sinus-
oidal function of elevation θ such that the power attenuation in the direction of a source can be
calculated as sin2ðθÞ. As the proposed MFAA station operates in the dense regime at the low end
of its operating frequency range and in the sparse regime at the high end of its operating fre-
quency range, the directivity of the individual antennas will change significantly with frequency.
Although this may affect the SIR at a given sidereal time, we note that most of the suppression of
other sources is provided by the station beam,14 so varying EEPs does not have a significant
effect on the conclusions of our analysis.

4.2 Calibrator Selection Strategy

The apparent power and isolation are the most important aspects to consider when selecting a
calibrator for SH.14 Intuitively, this seems to rule out calibration sources in the GP due to the
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SUMSS PS in the same region. The brightest source (21 Jy) is listed as SUMSS J040848-
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strong diffuse emission. However, our earlier analysis shows that isolation of the calibrator
becomes a minor factor for sufficiently bright sources combined with a high directivity of the
array.14 However, with the way we modeled the sky for MANTIS, it will be challenging to select
a calibration source from the GP. We therefore limited the region from which a calibrator can be
selected to regions outside the GP, where the sky was modeled using the PSCs. This region will
further be referred to as the calibration region. The PS nature of the sky model in the calibration
region enabled effective automatic identification and evaluation of potential calibrators.

Figure 5(a) shows the cumulative PS count versus lower flux density limit for the calibration
region. The exponential nature of the number of PSs versus lower flux density limit, together
with the fact that the PSs have a uniform random distribution, suggests that it is not unreasonable
to assume that the brightest sources are fairly well separated at the resolution of the telescope. It
was therefore assumed that the isolation of a bright source (from other bright sources) is not a
concerning factor when identifying potential calibrators. A quick visual inspection confirmed
this assumption. The region from which a calibrator can be selected was further limited to eleva-
tion angles θ > 30 deg to ensure that the required scan angle of MANTIS to reach a potential
calibrator remained realistic in a practical sense.

Due to the superior resolution of the VLA and the MOST, some sources that are resolved in
the NVSS and the SUMSS will be unresolved by MANTIS. Therefore, a potential calibrator in
the calibration region might be a “cluster” of bright PSs that are unresolved by MANTIS. If a
potential calibrator is identified, we thus need to check whether that source is part of an unre-
solved cluster of bright sources and determine an optimal pointing angle for this unresolved
cluster. This will avoid destructive interference of signals from sources at opposite sides of the
cluster on the longest baselines within the station array. A function was written that receives the
positions and corresponding powers of sources stronger than 1 Jy, from which an optimal cluster
(and its corresponding pointing angle) was selected based on the apparent power of its brightest
component. Obviously, these clusters also contained sources with powers <1 Jy, but these were
assumed to have a negligible contribution to the integrated power of the cluster. The process of
calculating the SIR from the sky model is discussed next.

4.3 Calculating the SIR

The SIR was calculated using Eq. (1). For a specific sidereal time, ai is the geometric delay
vector of the i’th interfering source in the calibration region or pixel in the GP region
(−10 deg < b < 10 deg). The apparent powers σc (calibrator) and σi (interferer) take the attenu-
ation of both the tile beam (for M > 1) and the EEP of each antenna into account. When imple-
menting the sum by looping over all sources in the sky, the SEFD of 0.0134 Jy (after integration
over 1 s and 10 MHz) of MANTIS is taken into account by disregarding sources that are below
the SEFD.

The MANTIS sky model consists of thousands of sources to evaluate. This makes the cal-
culation of the SIR for many instances over a sidereal day computationally expensive. At the
same time, the number of sources becomes so large below a certain flux density limit that a single
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sources in the calibration region.
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MANTIS station will reach its classical confusion limit. This effect is seen in Fig. 5, which
shows the cumulative source count (at a random sidereal time) and the corresponding SIR,
as a function of the lower flux density limit of the sources in the calibration region. An expo-
nential relationship is observed in the source count while a very weak dependence is observed in
the SIR for flux density limits <400 mJy (GP excluded). When including the GP, a very weak
dependence is observed for the full lower flux density limit range (which highlights the domi-
nance of the interference coming from the GP). A significant optimization could therefore be
done by only including PSs with apparent flux densities higher than 400 mJy.

5 Results

The SIR was calculated using Eq. (1) at 10 min intervals over 24 h local sidereal time. The results
are shown in Fig. 6. The apparent power of the calibrator σc at each time instance is plotted on the
right axis. The selection of a calibrator and its apparent power is independent of tile size and can
therefore be represented by a single curve.

As expected, the SIR, in general, improves significantly as a function of increasing tile size.
This is mostly due to an increase in directivity and a subsequent increase in the isolation of the
calibrator. The erratic variations of the results can be explained by the movement of bright
sources through the sidelobes as time passes. The discontinuities in the calibrator flux density
over time indicate the instances at which the algorithm selects a new calibrator. A smooth rela-
tionship in which the attenuation of the EEP is clear is otherwise seen.

It is interesting to note that the maximum SIR does not coincide with the maximum value of
σc. A closer look at the flux density distribution across the sky can explain this. Figure 7 shows
the positions of all sources at the indicated times, and their corresponding apparent powers after
attenuation by the EEP’s and the array beam forM ¼ 1. Also shown is the corresponding IM (Jy/
pixel) for the GP with the pointing direction of the array beam indicated by the red cross. The
arms of the cross also represent the principal planes of the array.

For M ¼ 1, the SIR reaches a maximum around t ¼ 02∶00 when σc is around half of its
maximum value over the 24 h. Several hours later (at around t ¼ 11∶00), σc reaches its maxi-
mum value while the SIR has decreased slightly. This is explained by the plots in the top two
rows in Fig. 7, which show the corresponding sky maps at both times. In both instances, the
calibrator is close to the GP, and as a result, the array beam samples the GP through its sidelobes
in the principal plane with relatively low attenuation. However, at the second instance
(t ¼ 11∶02), when σc reaches its maximum, the sidelobes in the principal planes of the array
cut through much brighter regions of the GP than in the first instance (t ¼ 02∶12), resulting in a
much higher level of interference.

A relatively sharp drop in the SIR is seen around t ¼ 17∶00 followed by a sharp rise a short
time later. Initially, the SIR decreases as σc goes down (for t > 11∶00), which is an expected
trend. However, a few moments later, the SIR increases significantly while σc remains relatively
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constant. At t ¼ 17∶52, the array beam is pointed at a calibrator close to the horizon with the GP
and its centre, where the spatial concentration of power is the highest, close by to the left of the
pointing direction. It is visibly clear that the array beam is sampling a significant portion of the
GP through its sidelobes with relatively low attenuation due to its close proximity to the main
beam. A few moments later at 18:12, the array beam shifts to a new calibrator with similar
apparent power but located further away from the GP. The increased distance between this cal-
ibrator and the GP results in higher attenuation (by the array beam) of the power coming from it.
This results in a sudden increase in the SIR. As expected, the exact increase in SIR at this point
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Fig. 7 (a) Positions of sources at the indicated local sidereal times. The logarithmic color scale
indicates their apparent powers after attenuation by EEPs and the array beam. The powers are
normalized to the brightest source. (b) The corresponding IM (Jy/pixel) for the GP with the pointing
direction of the array beam is indicated by the red cross. The arms of the cross also represent the
principal planes of the array.
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strongly depends on tile size. For a fixed calibration scenario, an increase in tile size will always
result in a higher SIR due to the higher directivity imposed by the tile beams. After switching to
the new calibrator, the SIR continues to increase as a function of time while the apparent power
of the calibrator remains relatively constant. This is because the calibrator moves along an equal-
sensitivity contour of the EEPs while the GP moves closer to the horizon, resulting in an increase
in its attenuation by the EEPs. Eventually, the entire GP dips partially below the horizon, causing
the SIR to spike for M ¼ 2 and M ¼ 4. This spike is much lower for M ¼ 1 due to its much
lower attenuation at the horizon.

6 Discussion and Conclusions

In this paper, we analyzed the calibratability of an MFAA station when using SH on astronomical
continuum sources excluding the Sun. To do this, a realistic sky model was simulated for an array
that is based on the preliminary specifications of the MANTIS.

The SIR was analyzed over a full sidereal day for a station placed at the SKA site in South
Africa. The results revealed that the isolation and position of a potential calibrator close to the GP
has a larger impact on the SIR than we originally anticipated. For example, the brightest potential
calibrator might be located such that a principal plane of the array cuts through a bright region of
the GP, resulting in a lower SIR than achievable with a fainter source that is more isolated from
the GP. The results showed that SIRs higher than 20 dB are achievable across a full sidereal day,
which is well above the 11.5 dB required to achieve 99% beamformer efficiency as explained in
Sec. 2.3. The suboptimal calibrator selection strategy implies that these results give a minimum
value for the SIR achievable with MANTIS. It can therefore be concluded with confidence that
SH will be able to produce high-quality calibration results when applied to the MANTIS. This
further implies that a system like an MFAA station can benefit from the significantly lower
computing requirements of SH compared with full covariance matrix-based calibration methods.
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