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Abstract. We created a simulation model to investigate the characteristics of fluorescence in two-photon-excited
samples. In the model, the sample is a diffusible solution of fluorophore molecules, which is divided into cubic
cells and illuminated by a train of focused laser pulses described as a Gaussian beam. Simulating the state
transitions according to a multilevel photodynamic model (also including photobleaching and intersystem cross-
ing), the simulator provides the expected number and the spatial distribution of emitted photons over time. Our
simulations demonstrated how the illumination laser power, diffusion, and the photodynamic parameters of the
fluorophore affect fluorescence. We revealed the unusual fluorescent profile that evolves as photobleaching
progresses: the most photons are not emitted from the focus (where a “dark hole” appears) but from an ellipsoid
around the focus. The model could be adapted to several fluorescent techniques (such as two-photon micros-
copy and fluorescence recovery after photobleaching). Furthermore, it might help to optimize the operating
parameters of the measurement devices (e.g., in order to reach higher image quality and lower photobleaching).
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1 Introduction
Fluorescence is a two-phase process during which photon
absorption is followed by photon emission. Its high sensitivity
and specificity1 are harnessed in sensing, imaging, and
manipulation. In fluorescent imaging and measurement tech-
niques, the fluorophore molecules of the sample are excited
by illumination, then the fluorescent photons emitted by the
relaxing molecules are collected and registered. The number
of fluorescent photons refers to the number of fluorophore mol-
ecules within the excited region. Thus, based on the recorded
data, a computer can depict the fluorophore distribution as a
microscopic image of the sample. Moreover, the temporal
changes and fluctuations of the fluorescent signal carry infor-
mation about the diffusion of fluorophore molecules into and
from the excited volume, which is exploited in fluorescence
correlation spectroscopy (FCS)2,3 and fluorescence recovery
after photobleaching (FRAP) (also known as fluorescence pho-
tobleaching recovery) measurements.4 There are different spe-
cial techniques to increase the spatial resolution of imaging. In
two-photon microscopes, focused light pulses generated by a
mode-locked laser excite the fluorophore molecules of the
sample.5 At the focal region, the intensity of illumination is
high enough to provoke two-photon excitation, during which
two photons are absorbed simultaneously while the molecule
attains an excited state. However, moving further away from
the focus, the probability of two-photon absorption decreases
rapidly, because its rate is proportional to the square of the irra-
diating light intensity (see Sec. 2.2). The fluorescent photons

can, therefore, be considered to originate from a small (sub-
femtoliter6) volume around the focus. The recently worked
out super-resolution microscopy techniques circumvent the
diffraction limit of the light microscopes formulated by
Abbe and Rayleigh. These methods apply for instance special
illumination patterns (as in the case of structured illumination
microscopy) or special nonlinear excitation (in stimulation
emission depletion microscopy), or limit the number of simul-
taneously emitting molecules to promote their individual
localization (in photoactivated localization microscopy, fluo-
rescence photoactivation localization microscopy, and stochas-
tic optical reconstruction microscopy).7,8

In the illuminated sample, not only fluorescence (i.e., “exci-
tation followed by photon emission”) takes place, since the
fluorophore molecules can also undergo further possible state
transitions: the excited molecule can return to the ground
state via internal conversion without photon emission, it can
reach the triplet state by intersystem crossing, or it can absorb
more photons. These absorbed photons can cause photo-
chemical reactions called photobleaching, which destroys the
fluorescent ability of the fluorophore molecule irreversibly.
Photobleaching has a significant influence on fluorescence: on
one hand, it is a major limit of image quality in two-photon
microscopy,9 and it also causes considerable difficulties in
FCS;2,3 on the other hand, it is a fundamental process in
FRAP measurements.

In order to gain accurate information on the sample (e.g., the
spatial distribution or the diffusion constant of the fluorophore
molecules), one has to know as precisely as possible where the
fluorescent photons originate from. In other words, one needs to
be aware of the detailed spatial profile of fluorescence. This
needs the consideration of the following factors:
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• The spatial profile of the excitation light

• The spatial distribution of the fluorophore molecules also
considering diffusion

• The state transitions (including photobleaching) of the flu-
orophore molecules according to their photophysical
properties without the assumption of a stationary state,
but also taking pulse saturation and ground state depletion
into account.

In this paper, we present a numerical model which combines
all these considerations contrary to previous works that com-
bined some but not all of the mentioned elements. The models
described in the preceding publications can be divided into two
groups: models in the first group focus on state transitions but
without taking into account the spatial profile,9–11 and some of
them also lack the consideration of photobleaching.12 Models in
the second group deal with the spatial profile; however, they do
not distinguish real photophysical states, but only an “active”
and a photobleached state (and in one case, also triplet dynam-
ics), which corresponds to the case in which photobleaching
affects molecules in the ground state.2,3,13–15

Based on our model, we implemented a simulator program
which enables the investigation of the spatial distribution of
fluorescence and photobleaching in two-photon excited sam-
ples. The model arrangement is as follows: a diffusible, initially
homogenous solution of a fluorophore is excited by a focused
laser pulse train. The laser light evokes two-photon excitation
and other state transitions according to the applied photody-
namic model.

A substantial difference between the simulations based on
the presented model and real experiments is that the simulator
uses a continuum model which determines the probabilities and
expected values of the events instead of handling the discrete
stochastic events (e.g., photon emission and photobleaching)
that occur in practice. Moreover, the simulator can reveal the
spatial distribution of photon emission within the excitation vol-
ume unlike a real two-photon microscope, which counts the
photons emitted from the whole excitation region without con-
sidering their precise source location.

The simulated arrangement can serve as a basic model for
several measurement and imaging techniques such as the afore-
mentioned two-photon and super-resolution microscopy, FCS,
and FRAP.

In Sec. 2, we present our computational model in detail: the
model of the illumination, the photodynamic model of the fluo-
rophore, and later on, the diffusion model and the model of the
photon detection. We also recall the underlying physical prin-
ciples. Afterward, in Sec. 3, we present our simulations.
Finally, we discuss the results (Sec. 4) and close the paper
with conclusions and acknowledgments.

2 Simulation Model
We modeled the following arrangement: a pulsed laser beam is
focused on a homogenous fluorophore solution in which exci-
tation, relaxation processes, photon emission, and photobleach-
ing take place (Fig. 1). The sample is divided into cubic cells
among which diffusion occur. The simulator calculates the num-
ber of fluorophore molecules in each photodynamic state (see
Sec. 2.2.2) and the number of emitted fluorescent photons
for every volume cell in each time step.

The arrangement has a cylindrical symmetry with respect to
the optical axis of the illuminating laser beam. Thus, a volume

cell can be referred to by two cylindrical coordinates, namely the
radial coordinate r denoting the distance from the beam axis and
the axial coordinate z denoting the distance measured from the
focus along the beam axis; the origin of the coordinate system is
the focus of the illuminating beam. Taking advantage of the
cylindrical symmetry, computational complexity can be remark-
ably reduced: there is no need to simulate the whole illuminated
region (denoted by the dotted rectangular box in Fig. 1), but it is
sufficient to simulate only one radial slice of it,2 which reduces
the number of volume cells from Oðn3Þ to Oðn2Þ. The arrange-
ment is also mirror symmetric with respect to the focal plane
z ¼ 0, which enables a further reduction of the number of vol-
ume cells by a factor of 1∕2.

2.1 Model of the Illumination

A monochromatic, continuous wave laser beam is commonly
described as a Gaussian beam (also called Gaussian–
Lorentzian profile,9 which is a solution of the paraxial
Helmholtz equation).16 However, to generate a photon flux
that is intense enough to provoke two-photon excitation,
mode-locked lasers are applied, which emit pulses with a dura-
tion in the femtosecond range. For instance, titanium:sapphire
lasers are prevalently used in two-photon microscopes. They
emit 100-fs-long laser pulses with a wavelength between 700
and 1050 nm,6 which corresponds to about 30 to 40 cycles
of the electromagnetic wave. Assuming that the temporal
shape of these pulses is a Gaussian function, thus their
Fourier transform is also a Gaussian function,17 and we can
determine that the full-width at half-maximum (FWHM) band-
width of such a Gaussian pulse is about 55 THz, which corre-
sponds to 15% of the typical central frequency of 375 THz
(800 nm). Consequently, the monochromatic continuous

Fig. 1 Scheme of the simulation arrangement. The red hour glass
shape denotes the illumination laser beam. The dotted rectangular
box shows a possible simulation volume instead of which a cylindrical
volume is used: the actually simulated volume cells are denoted by
the small blue cubes. Axis z points toward the direction of light
propagation.
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wave Gaussian beam offers an acceptable approximate descrip-
tion for such pulses.

In this work, we modeled the illuminating light as a train of
focused laser pulses, whose temporal profile is Gaussian
(Fig. 2):

PðtÞ ¼ Pmax exp

�
−

t2

2σ2pulse

�
: (1)

In which

σpulse ¼
τpulse

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p (2)

denotes the standard deviation of the Gaussian pulse with
FWHM of τpulse. Pmax is the peak power of the pulses, which
can be determined from the long-time-averaged laser power
Pavg as

Pmax ¼ Pavg2

ffiffiffiffiffiffiffiffi
ln 2

π

r
τrep
τpulse

; (3)

where τrep is the pulse repetition time (i.e., the inverse of the
pulse repetition rate).

During the simulations, we consider the laser beam to be
monochromatic. (However, as pulses get shorter, the error of
this approximation increases, the spectrum of the pulses
expands, and the space–time profile of the beam varies signifi-
cantly. For the description of such pulsed beams, see the work of
April.18)

In the Gaussian beam, the light intensity at a point ðr; zÞ is
given by the equation

Iðr; zÞ ¼ I0

�
WE0

WEðzÞ
�
2

exp

�
−

2r2

W2
EðzÞ

�
; (4)

where

WEðzÞ ¼ WE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z
zE0

�
2

s
; (5)

in which

zE0 ¼
πW2

E0

λexc
(6)

is the Rayleigh range,

WE0 ¼
λexc
πθ

; (7)

is the waist radius, λexc is the wavelength of the excitation light,
and θ is the beam divergence.16 Subscript E refers to excitation
for the sake of the distinction from the detection profile (see
Sec. 2.4). For a continuous wave Gaussian beam, the light inten-
sity at the focus can be determined from the laser power P as

Fig. 2 The Jablonski diagram of the fluorophore represents the pho-
todynamic states and the possible state transitions of the model. S0,
S1, and T 1 denote the ground state, excited state, and triplet state,
respectively; B1, B2, B3, and B4 indicate the photobleached states.
Solid red arrows pointing upward denote photon-absorption-induced
transitions (group 1), arrows pointing downward denote the relaxation
transitions (group 2) with (solid blue line) or without photon emission
(dashed black lines), and k denotes the rate constant of each
transition.

Fig. 3 The estimation of the neighboring cell layer for the calculation
of diffusion is achieved by linear interpolation using the values of
the simulation layer. Axis z points from the reader into the figure at
point O.

Fig. 4 The temporal shape of the laser pulse train and the main steps
of the simulation. Each laser pulse is described as a Gaussian func-
tion with a full-width at half-maximum length of τpulse. The time period
between two consecutive pulses is τrep. Note that in the figure the ratio
of these two periods is distorted for the sake of demonstrativeness; in
fact, τpulse is much shorter than τrep. Transitions related to photon
absorption taking place during the laser pulses are simulated in
one step, whereas the relaxation transitions and diffusion occurring
between the laser pulses are simulated in N (1 or more) steps.
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I0 ¼
2P

πW2
E0

: (8)

We suppose that this relationship also remains approximately
valid for our pulsed case, i.e., we can assume that in Eqs. (4) and
(8), the instantaneous intensity I0ðtÞ at the focus as well as the
instantaneous intensity Iðr; z; tÞ at point ðr; zÞ follows the laser
power PðtÞ without delay. Therefore, the light intensity at a
point ðr; zÞ and time instance t can be calculated as

Iðr; z; tÞ ¼ I0ðtÞ
�
WE0

WEðzÞ
�
2

exp

�
−

2r2

W2
EðzÞ

�
; (9)

moreover

I0ðtÞ ¼
2PðtÞ
πW2

E0

: (10)

In our model, we neglect the scattering and the attenuation
of light in the sample. By the use of the Gaussian beam, the
illumination is described as a scalar field of light intensity,
i.e., only the magnitude of the electric field is considered,
but not its direction. We assume that the orientation of the fluo-
rophore molecules is uniformly random, thus the influence of
the orientation is involved in the absorption cross-section.
Furthermore, we assume that the lifetime of the relaxation proc-
ess coupled to photon emission is much longer than the
Brownian rotational lifetime of the fluorophore molecules;
therefore, the emitted fluorescent light is considered to be
depolarized.19

2.2 Photodynamic Model of the Fluorophore
Molecules

2.2.1 Theoretical description of the rates of
one- and two-photon absorptions

In the following, we recall the theoretical background of one-
and two-photon absorptions according to the books of Boyd20

and Masters and So1 using the semiclassical model for the
description of light–matter interaction. In this approach, the mat-
ter is quantized (it is built of particles), whereas light is handled
as an electromagnetic field. In the absence of radiation, one can
describe the atomic system with the Schrödinger equation:�
~p2

2 m
þ Vð~rÞ

�
Ψð~r; tÞ ¼ iℏ

∂Ψð~r; tÞ
∂t

; (11)

whose eigenfunctions and eigenvalues give the possible states
and energy levels of the system, where Ψ is the state function,
~p is the momentum, m is the mass of the particle, Vð~rÞ is the
potential energy at point ~r, i is the imaginary unit, and ℏ is the
reduced Planck constant. According to the electric dipole
approximation, illumination of the system can be interpreted
as a perturbation during which the electric field induces electric
dipoles. Consequently, a new term is to be added to the
Schrödinger equation when the atomic system is illuminated:�
~p2

2m
þVð~rÞ−

X
ej ~Eðω;tÞ · ~rj

�
Ψð~r;tÞ¼ iℏ

∂Ψð~r;tÞ
∂t

; (12)

where ~rj is a vector connecting the separated charge ej in the
j’th electric dipole induced by electric field ~Eðω; tÞ of angular

frequency ω at time t. Assuming that the illuminating light is
monochromatic and linearly polarized, from Eq. (12) applying
the first-order time-dependent perturbation theory, one can
express the rate of the transition from the ground state m to
an excited state n due to one-photon absorption as

Rð1Þ
mn ¼ σð1ÞmnðωÞI; (13)

where σð1ÞmnðωÞ is the one-photon absorption cross-section in
units of cm2∕photon, and I is the light intensity or, more pre-
cisely, photon flux, measured in units of photon∕ðcm2 sÞ.
Similarly, in the case of two-photon absorption, the second-
order time-dependent perturbation theory results in the follow-
ing rate for the transition from the ground state m to an excited
state n, via a virtual state k:

Rð2Þ
mn ¼ σð2ÞmnðωÞI2; (14)

where σð2ÞmnðωÞ is the two-photon absorption cross-section in
units of cm4 s∕photon2. The absorption cross-sections can be
measured or they can be determined theoretically by Fermi’s
golden rule:

σð1ÞmnðωÞ ¼ 4π2ω

nc
j~μmnjρðω ¼ ωmnÞ (15)

and

σð2ÞmnðωÞ ¼ 8π3ω2

n2c2ℏ

����Xk

~μmk~μkn
ωkn − ω

����2ρð2ω ¼ ωmnÞ; (16)

where ω denotes the angular frequency of the illuminating light,
n is the refractive index, c is the speed of light, and ρ is the
density of states. The theoretical derivation of the absorption
cross-sections requires the knowledge of the transition moment
~μmn, which can also be calculated theoretically, namely from the
wave functions φm and φn of the two states:

~μmn ¼
X
j

ej

Z
φ�ð0Þ
m ~rjφ

ð0Þ
n d3r: (17)

Nevertheless, for larger molecules, the calculation of the state
functions is practically impossible because of the computational
complexity of the problem. In our simulations, the cross-sec-
tions are to be given as input parameters.

Finally, we note that the connection between the light inten-
sity and the electric field is

I ¼ nc
2πℏω

j~Ej2: (18)

2.2.2 Photodynamic states and transitions in our model

We model the states and state transitions by a multilevel photo-
dynamic model taken from the literature9–11 with modifications.
The model includes four different photobleaching routes starting
from the excited states. It contains the following states (Fig. 3):
ground state S0, excited state S1, triplet state T1, and four photo-
bleached states B1, B2, B3, and B4. We neglect vibrational and
rotational states; therefore, we consider the electronic states to
be discrete (sharp). In the model, the following transitions are
possible:
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• S0 → S1, S1 → B2, and T1 → B4 via two-photon absorp-
tion characterized by absorption cross-sections δexc, δpb2,
and δpb4,

• S1 → B1 and T1 → B3 via one-photon absorption charac-
terized by absorption cross-sections σpb1 and σpb3,

• S1 → S0 radiative relaxation followed by emission of a
fluorescent photon, characterized by time constant τf,

• S1 → S0 nonradiative relaxation (internal conversion)
characterized by time constant τIC,

• S1 → T1 intersystem crossing characterized by time con-
stant τISC, and

• T1 → S0 nonradiative relaxation characterized by time
constant τTS.

We omit stimulated emission as it is neglected also in several
referenced papers.9,11,19 The transition from state A to state B is
described as follows: the time derivative of the number of mol-
ecules in state A in volume cell ðr; zÞ at time instant t (supposing
the change is due only to transition A → B) is

_Aðr; z; tÞ ¼ −kABðr; z; tÞAðr; z; tÞ; (19)

whereas the time derivative of the number of molecules in state
B (supposing the change is due only to transition A → B) is

_Bðr; z; tÞ ¼ kABðr; z; tÞAðr; z; tÞ; (20)

where kAB is the rate constant of the transition. If more than one
transition affect a state, then the changes of the numbers of mol-
ecules deriving from each transition are added up.

The photodynamic processes in the model can be divided
into two groups:

1. Transitions in the first group are induced by photon
absorption. The rate constant of such a transition
depends on the illumination intensity either linearly
(kpb1 and kpb3) or quadratically (kexc, kpb2, and
kpb4), and it is accordingly proportional to either
the one- (σpb1 and σpb3) or two-photon absorption
cross-section (δexc, δpb2, and δpb4) which characterizes
the process. The rate constant can be calculated as

kABðr; z; tÞ ¼ σAB
λexc
hc

Iðr; z; tÞ; (21)

if the transition is induced by one-photon absorption,
and as

kABðr; z; tÞ ¼
1

2
δAB

�
λexc
hc

�
2

I2ðr; z; tÞ; (22)

if it is coupled to two-photon absorption,11 where σAB
and δAB are the one- and two-photon absorption cross-
sections at wavelength λexc, respectively, h is Planck’s
constant, c is the velocity of light, whereas Iðr; z; tÞ is
the illuminating light intensity at point ðr; zÞ at time
instance t in units of W∕cm2. The space- and time-
dependences of the rate constants arise from the
space- and time-dependence of the illumination inten-
sity. In Eq. (22), the factor 1∕2 expresses that two

photons are required for the two-photon excitation
process.

2. The rest of the transitions (relaxation transitions) are
intensity-independent and thus space- and time-inde-
pendent. Each of them is characterized by a global
time constant. The rate constant of such a process is
determined as the inverse of the time constant of
the process (kf ¼ 1∕τf, kIC ¼ 1∕τIC, kISC ¼ 1∕τISC,
and kTS ¼ 1∕τTS).

We suppose that the pulse duration is much shorter than the
time constant of the relaxation processes (i.e., τpulse ≪ τIC, τf,
τISC, τTS), furthermore the pulse length is much shorter than the
pulse repetition time (i.e., τpulse ≪ τrep). Therefore, during a
light pulse, the relaxation processes can be neglected and it
can be assumed that a fluorophore molecule is excited atmost
once per pulse.9–11,19 Consequently, it is reasonable to construct
two differential equation systems: the first one describes the
photon-absorption-induced processes taking place during the
light pulses (corresponding to group 1); the second one
expresses the relaxation transitions occurring during the inter-
pulse periods (corresponding to group 2).10 Thus, the following
two differential equation systems have to be constructed for each
volume element:2
6666666666664

_S0
_S1
_T1

_B1

_B2

_B3

_B4

3
7777777777775
¼

2
6666666666664

−kexc 0 0

kexc −ðkpb1 þ kpb2Þ 0

0 0 −ðkpb3 þ kpb4Þ
0 kpb1 0

0 kpb2 0

0 0 kpb3
0 0 kpb4

3
7777777777775

·

2
64
S0
S1
T1

3
75 (23)

and2
4 _S0
_S1
_T1

3
5 ¼

2
64 ðkIC þ kfÞ kTS
−ðkIC þ kf þ kISCÞ 0

kISC −kTS

3
5 ·

�
S1
T1

�
: (24)

The vectors on the right side contain the number of mole-
cules in the given cell in the corresponding states; the vectors
on the left are built from the time derivatives of the molecule
numbers; whereas the matrices contain the rate constants char-
acterizing the transitions. The molecule numbers and their time
derivatives in both equations, and the rate constants in Eq. (23),
depend on spatial coordinates ðr; zÞ and time t; however, for the
sake of simplicity, it is not signed here [as opposed to Eqs. (19)
and (20)]. On the other hand, rate constants in Eq. (24) are in-
dependent of space and time as already mentioned.

2.2.3 Computation of the transition probabilities

Based on the ordinary differential equation system formulated in
Eq. (23), one can calculate the probability of each photon-
absorption-induced state transition during one laser pulse for
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every volume cell. Because the pulse train consists of identical
laser pulses, it is enough to calculate these probabilities once.
S0, S1, and T1 are the three states from which transitions are
possible. Accordingly, the simulator solves the differential equa-
tion system with three different initial conditions formulating
that the molecule starts from state S0, S1, or T1. In our
model, the time profile of the illumination intensity is
Gaussian; thus, it has an infinite support. Nevertheless, the
numerical integration is performed on the arbitrarily chosen
domain spanning from −4σpulse toþ4σpulse, where σpulse denotes
the standard deviation of the Gaussian function describing the
laser pulse.

The relaxation transitions [together with the diffusion (see
Sec. 2.3)] taking place between two consecutive laser pulses
are simulated in N steps; that is, the simulation time step is
τstep ¼ τrep∕N. Similar to the photon-absorption-induced transi-
tions, the simulator calculates the probability of each relaxation
transition occurring between laser pulses by solving Eq. (24)
numerically for t ¼ τstep. The solution is performed with two
different initial conditions which describe that the molecule
starts from state S1 or T1. [For Eq. (24), there exists also an ana-
lytical solution, namely exponential functions. Transition S1 →
T1 → S0 is a two-step decay, for which Bateman gave a
solution.21]

The numerical solution of the differential equation systems is
performed by the ode45 MATLAB function applying the
Dormand-Prince method, which combines explicit fourth and
fifth order Runge-Kutta formulae.22

As a result, the simulation of a state transition is simplified to
the transfer of a certain fraction of the molecules from one state
to another according to the probability calculated initially. Pulse
saturation and ground state depletion are inherently taken into
consideration by the model.

2.3 Diffusion Model

As explained above, the sample is modeled as an initially
homogenous, diffusible fluorophore solution, which is divided
into cubic cells. Hereby, we give the detailed model of the iso-
tropic diffusion taking place in the sample.

2.3.1 Theoretical description of diffusion: Fick’s law

The transportation of molecules due to the concentration gra-
dient is described by Fick’s law of diffusion:

J ¼ −Dgradρ; (25)

where J is the vector of particle flux density, D is the diffusion
constant, and ρ is the concentration of the particles.23 The rela-
tion between the diffusion flux and the concentration is given by
the continuity equation, which expresses the conservation of the
particles:

div J ¼ −
∂ρ
∂t

: (26)

From Eqs. (25) and (26), the diffusion equation can be
obtained:

∂ρ
∂t

¼ DΔρ: (27)

The solution of Eq. (27) is

ρðx; y; z; tÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p �
3
exp

�
−
x2 þ y2 þ z2

4Dt

�
; (28)

which describes the concentration evolved by diffusion at point
ðx; y; zÞ at time t if the matter is placed at the origin, t ¼ 0.23

Separating the diffusion along the three axes, we obtain

ρðx; y; z; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp

�
−

x2

4Dt

�
·

1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp

�
−

y2

4Dt

�

·
1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp

�
−

z2

4Dt

�
; (29)

i.e., the concentration of the molecules along each axis is
described by a Gaussian distribution with zero mean and vari-
ance of 2Dt.

2.3.2 Discretized diffusion model

Simulation needs discretization both in space and time. The spa-
tial discretization is achieved by the cubic mesh described at the
beginning of Sec. 2, whereas the time step of the diffusion sim-
ulation is τstep ¼ τrep∕N as was stated in Sec. 2.2.3. (In
Sec. 3.1.3, we present that even N ¼ 1 can be a convenient
choice.) In every time step, a molecule can stay at the same vol-
ume cell or can diffuse to one of the two neighboring cells along
each axis; the probability of diffusion is the same toward the
negative and positive directions. Let X be a discrete random var-
iable which denotes the dislocation of a molecule from the ori-
gin along axis x. It can take three values:

• x1 ¼ −Δx: the dislocation of the molecule is one volume
cell toward the negative direction along the axis,

• x2 ¼ 0: the molecule stays at the same volume cell, and

• x3 ¼ Δx: the dislocation of the molecule is one volume
cell toward the positive direction along the axis.

The probabilities that belong to these three events are the
following:

• p1 ¼ PrðX ¼ x1Þ ¼ PrðX ¼ −ΔxÞ ¼ p,

• p2 ¼ PrðX ¼ x2Þ ¼ PrðX ¼ 0Þ ¼ 1 − 2p, and

• p3 ¼ PrðX ¼ x3Þ ¼ PrðX ¼ ΔxÞ ¼ p,

where 0 < p < ð1∕3Þ. Therefore, the expectation value and vari-
ance of X are

E½X� ¼
X3
i¼1

pixi ¼ 0 (30)

and

Var½X� ¼ E½ðX − E½X�Þ2� ¼
X3
i¼1

pix2i ¼ 2p · ðΔxÞ2: (31)

Let YðkÞ be a random variable which denotes the dislocation
of a molecule after k time steps, i.e.,
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YðkÞ ¼
X þ X þ : : : þ X|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

k
¼ k · X: (32)

According to the central limit theorem,17 as k → ∞, YðkÞ is
asymptotically normal (Gaussian) with mean

E½YðkÞ� ¼ μ ¼
Xk
i¼1

E½X� ¼ k · E½X� ¼ 0 (33)

and variance

Var½YðkÞ� ¼ σ2 ¼
Xk
i¼1

Var½X� ¼ k · Var½X� ¼ 2k · p

· ðΔxÞ2: (34)

Equation (29) states that the distribution of the diffusing mat-
ter is Gaussian with zero mean and a variance of 2Dt; thus, for
the variance σ2 of YðkÞ, equation

σ2 ¼ 2 k · p · ðΔxÞ2 ¼ 2Dt; (35)

should hold. Substituting t ¼ kτstep into Eq. (35), we obtain

p ¼ Dτstep
Δx2

; (36)

for the probability that a molecule moves to one of the neigh-
boring volume cells along a coordinate axis during one
time step.

2.3.3 Cylindrical symmetry

The three axes along which we describe the diffusion are axes r,
z, and a third axis y, which is perpendicular to both axes r and z.
Therefore, in order to simulate the diffusion along axis y, we
need two adjacent volume cell layers lying next to the simula-
tion layer (Fig. 4). Because of the cylindrical symmetry with
respect to axis z, these adjacent layers are identical. The
number of molecules in the cells of these layers is estimated
by interpolation based on the values of the simulation layer.
For the sake of computational simplicity, linear interpolation
is used.

Because of the cylindrical symmetry, the concentration at
point P has to be equal to the concentration at point Q since
both points are at distance r0 from the origin. From the concen-
trations cA and cB at points A and B, the concentration cQ ¼ cP
at points Q and P is determined by linear interpolation:

cP ¼ cQ ≈ cA þ ðr0 − br0cÞðcB − cAÞ; (37)

where b: : : c denotes the floor function. Because the distance
between points A and B is unity, br0c is equal to the distance
between points O and A.

2.3.4 Boundary conditions

During the simulation of diffusion, we use zero-flux (Neumann)
boundary condition at the outer edges, i.e., the edge layer is
repeated and is put beside the simulation region. The cells sit-
uated on axes r and z form “virtual” edges because they are
actually in the middle of the simulated region. Therefore, in

these cases to preserve the delineated symmetry of the arrange-
ment, not the edge layer (which is located on the axis of sym-
metry), but the next one is repeated and put beside the
simulation region during the simulation.

2.4 Model of the Photon Detection

Here, we present a possible model for photon detection,
although in this paper we do not cover the detected number
of photons nor the detection profile.

The probability that one detects a fluorescent photon origi-
nating from the volume element located at ðr; zÞ is
pdetðr; zÞ ¼ η · Φ · Yðr; zÞ; (38)

where η is the efficiency of the detection, Φ is the fractional
solid angle of the observation, and Yðr; zÞ is the observation
beam profile.19 In the case of full aperture detection,

Φ ¼ NA2

4n2
(39)

and

Yðr; zÞ ¼ 1: (40)

It means that the fluorescent photons are detected with the
same probability, independently from the point from where
they were emitted. (NA denotes the numerical aperture, and
n is the refractive index of the sample). However, for confocal
observation through a single-mode fiber,

Φ ¼ λ2emit

4π2n2W2
D0

(41)

and

Yðr; zÞ ¼
�
WD0

WDðzÞ
�
2

exp

�
−

2r2

W2
DðzÞ

�
; (42)

i.e., the observation beam profile is described by a Gaussian
beam, whose waist radius is WD0. λemit denotes the wavelength
of the emitted fluorescent light which is to be detected.
(Subscript D refers to detection.).

2.5 Process of the Simulation

In the beginning of the simulation, the probability of each state
transition is calculated for every volume cell (see Sec. 2.2.3).
Then comes the simulation of the state transitions and photon
emission evoked by the pulsed illumination. Initially, all the
molecules are in the ground state (S0). At the end of the first
light pulse, a fraction of the molecules given by the transition
probabilities is transferred to other states by the photon-absorp-
tion-induced transitions (group 1 in Sec. 2.2.2). Until the start of
the second light pulse, relaxation processes (group 2 in
Sect. 2.2.2) and diffusion take place. They are simulated in
the same way: some fractions of the molecules determined
by the transition probabilities are transferred to other states
or to the neighboring cells. These two phases compose one
laser cycle and they are repeated for the required times during
the simulation process (Fig. 2). The pseudocode of the algorithm
is provided in Appendix.
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3 Simulations and Results

3.1 Selection of the Simulation Parameters

Our goal here is, illustrating the capabilities of our model and
simulator, to demonstrate by characteristic simulation cases how
different factors (laser power, photobleaching cross-section, dif-
fusion coefficient, and intersystem crossing) affect fluorescence.
A notable advantage of the simulator is that it makes possible the
separate investigation of these factors.

We tried to choose the simulation parameters in such a way
that they could reflect realistic circumstances. Nevertheless, they
do not refer to a given measurement on a real fluorophore by a
real device. First, we fixed the following parameters: pulse
length τpulse ¼ 100 fs, pulse repetition time τrep ¼ 12.5 ns

(i.e., the pulse repetition rate was 80 MHz), and the wavelength
of the illuminating light λexc ¼ 800 nm, whose values corre-
spond to the Ti:sapphire laser commonly used in two-photon
microscopes. Unless indicated, the diffusion and the relaxation
processes are simulated in one step per laser cycle; i.e., N ¼ 1

and τstep ¼ τrep. We set θ ¼ 60 deg for the beam divergence. In
every simulation, we used the arbitrarily chosen 1 μmol∕L for
the concentration of the homogenous fluorophore solution;
however, this value behaves as a simple multiplier when mol-
ecule and photon numbers are calculated by the simulator.
We set the fluorophore parameters to be in the same order of
magnitude as values found in the literature10,11 for real fluoro-
phores. We used 2 × 10−49 cm4 s ¼ 20 GM for the excitation
two-photon absorption cross-section δexc and 3 ns for the life-
time τf of fluorescent relaxation. In each presented simulation,

we disabled either all the photobleaching routes (by setting their
absorption cross-sections to zero) or we enabled one of them (by
setting its absorption cross-section to some nonzero value given
later). We also disabled internal conversion in all the simulations
and intersystem crossing in all but in one virtual experiment set-
ting their lifetimes to τIC ¼ ∞ and τISC ¼ ∞. (The one excep-
tion is indicated later, see Sec. 3.2.5.)

3.1.1 Calibration of the laser power

First, we ran simulations in order to examine the spatial profile
of the excitation probability at different values of the laser power
Pavg. In this experiment, we disabled photobleaching (i.e., we
set σpb1, δpb2, σpb3, and δpb4 to 0) and diffusion (i.e., we set
diffusion constant D to 0). We set the radius and height of
the simulated cylinder to R ¼ 5 μm and H ¼ 10 μm, respec-
tively, and the cell size to Δx ¼ 0.01 μm. We used T ¼ 1.25 ×
10−6 s for the simulation length, which corresponds to 100 laser
cycles.

The probability of excitation at the focus during one laser
pulse increased nearly linearly with the laser power in the
case of moderate illumination (5–30 mW) [Fig. 5(a)]. At higher
laser powers, the excitation probability saturated, but the num-
ber of emitted photons (i.e., the signal) still increased [Fig. 5(b)].
Nevertheless, when we increased the illumination intensity, the
fluorescing region expanded [Figs. 5(c) and 5(d)]. It means that
the uncertainty of the source location of the fluorescent photons
undesirably increased. Based on these results, we chose two
laser power levels for the further simulations: 25 and 40 mW.
They correspond to the cases when the probabilities that a

Fig. 5 Dependence of (a) the excitation probability at the focus, (b) the number of emitted photons, and
(c) and (d) the excitation profile on the illumination laser power. (c) and (d) The probability along axes r
and z that a fluorophore molecule is excited during one laser pulse. The following values were used for
the laser power: 5, 10, 15, 20, 25, 30, 35, 40, 50, and 60 mW. The higher the laser power is, the darker
and the higher the curve is. Note the difference between the scales of the horizontal axes of (c) and (d).
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fluorophore molecule at the focus is excited during one pulse are
70.4% and 95.6%, respectively. Figure 6 depicts the spatial pro-
file of the probability that a fluorophore molecule is excited dur-
ing one laser pulse in the cases of the mentioned two laser power
values.

3.1.2 Calibration of the cell size

In the next simulation, we checked to what degree the cell size
influences the results. Because the illumination intensity
changes faster in the space near the focus, whereas its gradient
is smaller on the periphery, we ran simulations of length
T ¼ 1.25 × 10−6 s on a small region (R ¼ 0.32 μm and
H ¼ 0.96 μm) around the focus with different cell sizes.
Photobleaching and diffusion were still disabled. Figure 7(a)
summarizes the results, whereas Fig. 7(b) depicts the number
of simulated cells, which is proportional to the computation
time and the memory requirement. Since it was a reasonable
trade-off between accuracy and computational time, we retained
Δx ¼ 0.01 μm for the cell size in further simulations. [For this
cell size, the error of the emitted-photon number is 0.60% and
0.69% for the two chosen laser power values (25 and 40 mW)

considering the case with Δx ¼ 1.25 × 10−3 μm as the
reference.]

3.1.3 Calibration of the simulation of diffusion

Here, we investigate how much it modifies the emission profile
if the time step τstep of the simulation of diffusion (and relaxation
transitions) is reduced. The influence of the diffusion on
the fluorescent profile increases with the diffusion constant,
the degree of photobleaching, and the length of the simulation.
Accordingly, to study the “worst case,” we used Pavg ¼ 25 mW
and σpb1 ¼ 5 × 10−22 cm2 for the laser power and the photo-
bleaching cross-section, respectively, since, among those pre-
sented in this paper, this is the setting that results in the
highest degree of photobleaching. Furthermore, we set the dif-
fusion constant to the highest value occurring in the presented
simulations, namely D ¼ 8 × 10−10 m2∕s. The simulation
length was T ¼ 1.25 × 10−3 s (100,000 cycles), and we set
the radius and the height of the simulation volume to
R ¼ 0.5 μm and H ¼ 1.5 μm, respectively. For N, which
denotes in how many steps per laser cycle the diffusion and
relaxation transitions are simulated, we used eight different val-
ues: 1; 2; 4; : : : ; 128. In other words, the simulation time step

Fig. 6 The spatial profile of the probability that a fluorophore molecule is excited during one laser pulse in
the cases when the laser power Pavg is (a) 25 mW and (b) 40 mW.

Fig. 7 Dependence of (a) the fluorescent photon number and (b) the number of simulated cells on the cell
size. In (a), the reference is the photon number obtained for the simulation case with
Δx ¼ 1.25 × 10−3 μm.
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τstep was set to the pulse repetition time τrep ¼ 12.5 ns of the
mode-locked laser and its 1∕2; 1∕4; : : : ; 1∕128.

Figures 8(a)–8(c) delineate the local relative error of the
number of emitted photons per volume cell in the 100,000th
cycle in the cases when diffusion and relaxation processes
were simulated in 1, 2, and 4 steps per laser cycle. Figure 8(d)
shows the maximum local relative error of the number of pho-
tons emitted in the 100,000th cycle as a functionN. In each case,
the reference is the photon emission profile obtained for the 128-
steps-per-cycle case. These diagrams demonstrate the conver-
gence of the calculated photon emission distribution as the sim-
ulation time step τstep tends to zero.

Even in the one-step-per-cycle case [Fig. 8(a)], the relative
error was less than 1‰ in the majority of the simulation region.
There were two exceptions: some of the cells located at the
boundary of the simulation volume (here, the relative error
was about 2%) and the outer regions located near the focal
plane (where the relative error was about approximately 1%).
However, the fact that the rate of excitation (and thus that of
photon emission and photobleaching) is small in these regions
(see Fig. 6) diminishes the significance of this error.
Consequently, even in the presented “worst case” (high photo-
bleaching and intense diffusion), it is enough to simulate the
diffusion in one step per laser cycle. Therefore, we used this
setting in the following simulations.

Now, let us consider the error deriving from the finiteness
of the simulation volume. The applied zero-flux boundary

condition works properly if the concentration gradients are
small at the edge regions. Since the spatial inhomogeneity of
the molecules in different states originates from the photophys-
ical transitions taking place mostly at the focus, it can be
assumed that increasing the size of the simulation volume
decreases the error deriving from the finiteness of the compu-
tation region. Thus, to find the appropriate dimensions, we ran
simulations in which the radius R of the simulation volume was
swept from 0.5 μm to 3.0 μm, while the height H of the sim-
ulation volume was, in each case, three times larger than the
radius.

Figures 9(a)–9(c) depict the local relative error of the number
of emitted photons per volume cell in the 100,000th cycle in the
cases of the three smallest simulation volumes. Figure 9(d)
shows the maximum local relative error of the number of pho-
tons emitted in the 100,000th cycle within the inner region (of
radius R ¼ 0.5 μm and height H ¼ 1.5 μm) as a function of the
radius of the simulation volume. In each case, the reference is
the photon emission profile obtained for the largest simulated
volume (of radius R ¼ 3 μm and height H ¼ 9 μm). These dia-
grams confirm that as the simulation volume is expanded, the
maximum of the local relative error falls rapidly. When the
radius and height of the simulation volume are set to
R ¼ 1.5 μm and 4.5 μm, the error is tolerably small (approxi-
mately 2‰ to 3‰); thus, this setting can be regarded as an
acceptable trade-off between accuracy and simulation time. If
the diffusion constant is smaller, then the degree of the error

Fig. 8 (a)–(c) The local relative error of the number of emitted photons per volume cell in the 100,000th
cycle in the cases when diffusion and relaxation processes were simulated in 1, 2, and 4 steps per laser
cycle. (d) The maximum local relative error of the number of photons emitted in the 100,000th cycle as a
function of the number of simulation steps per laser cycle. In each case, the radius and height of the
simulation volume wereR ¼ 0.5 μm andH ¼ 1.5 μm, respectively, and the reference is the photon emis-
sion profile obtained for the 128-steps-per-cycle case. Note the difference between the scales of (a)–(c).
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diminishes to a great extent. It would, therefore, be reasonable to
choose a smaller simulation volume in these cases. Nonetheless,
for the sake of simplicity and consistency, we set the dimensions
of the simulation volume to the aforementioned values
(R ¼ 1.5 μm and 4.5 μm) in all those simulation cases when
diffusion is enabled.

3.2 Investigation of the Three-Dimensional
Fluorescent Profile and Its Time Evolution

3.2.1 Factors affecting the photon emission profile

We have arrived at the simulations investigating the spatial pro-
file of fluorescence and its changes over time due to photo-
bleaching. Figure 10 depicts 12 simulation cases in which we
set different input parameters. We used two different values
for laser power Pavg (25 and 40 mW), diffusion constant D
(zero and 2 × 10−10 m2∕s), and for photobleaching cross-sec-
tion σpb1: 5 × 10−23 cm2 (a value found in the paper of
Niesner et al.10) and a value 10 times larger (5 × 10−22 cm2)
to simulate increased photobleaching. (The three other photo-
bleaching routes were disabled, i.e., their absorption cross-
sections were set to 0.) The heat maps show the normalized
number of emitted photons per volume cell during the 10th,
10,000th, and 100,000th laser cycles: in each row, the maximal
local value of the fluorescent photon number corresponds to 1.

Even when both the laser power and photobleaching cross-
section σpb1 were moderate (25 mWand 5 × 10−23 cm2, middle
row of the table), the decline of fluorescence due to photo-
bleaching was perceptible after a 1.25 × 10−4-s-long illumina-
tion [10,000 laser cycles, Fig. 10(f)], and it became severe
after 1.25 × 10−3 s [100,000 cycles, Fig. 10(g)], especially at
the focus, where a “dark hole” evolved. When the photobleach-
ing cross-section was set to 10 times higher (third row of the
table), then after 10,000 cycles, we got a profile [Fig. 10(j)]
which is similar to the one obtained in the case of moderate pho-
tobleaching cross-section after 100,000 cycles [Fig. 10(g)]. Not
surprisingly, the increase of the laser power also accelerated
photobleaching (first row of the table). Diffusion, however,
compensated photobleaching more or less (compare columns
3 and 4). (This phenomenon is the foundation of FRAP.)

Figure 11 shows the emission profiles depicted in Figs. 10(e)
and 10(g) in a three-dimensional plot.

3.2.2 Time evolution of the fluorescent profile in the cases
of one- and two-photon-induced photobleaching

In the following simulations, we investigated the time evolution
of the spatial profile of fluorescence in the cases of one- and
two-photon-induced photobleaching occurring via state S1.
For the former transition, we used σpb1 ¼ 5 × 10−23 cm2

Fig. 9 (a)–(c) The local relative error of the number of emitted photons per volume cell in the 100,000th
cycle in the cases when the radius R of the simulation volume was 0.5 μm, 1.0 μm, and 1.5 μm, respec-
tively, and the height H of the simulation volume was three times its radius. (d) The maximum local rel-
ative error of the number of photons emitted in the 100,000th cycle within the inner region (of radius
R ¼ 0.5 μm and height H ¼ 1.5 μm) as a function of the radius of the simulation volume. In each
case, the reference is the photon emission profile obtained for the largest simulated volume (of radius
R ¼ 3 μm and height H ¼ 9 μm). Note the difference between the scales of (a)–(c).
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again, whereas we set δpb2 to 6.534 × 10−54 cm4 s in order that
the probability that a fluorophore molecule being in state S0 and
located at the focus is photobleached during one laser pulse
would be approximately the same for the two cases. In these

simulations, we set the laser power to Pavg ¼ 40 mW and dis-
abled the diffusion.

The results are summarized in Fig. 12. The first row of the
table [Figs. 12(a)–12(d)] depicts the number of emitted photons

Fig. 10 Spatial distribution of photon emission. The images depict the normalized number of emitted
photons per volume cell during the 10th, 10,000th, and 100,000th laser cycles. The normalization
was carried out row by row: in each row, the maximal local value of the photon number corresponds
to 1. In the middle row [(e)–(h)], both the laser power and the photobleaching cross-section σpb1
were moderate. Even in this case, the decline of fluorescence due to photobleaching was perceptible
after an illumination of 10,000 laser cycles (f), and it became severe after 100,000 cycles (g), especially at
the focus, where a “dark hole” evolved. Laser power was increased in the first row [(a)–(d)] and the photo-
bleaching cross-section in the third one [(i)–(l)]. In both cases, photobleaching was accelerated. In col-
umns 1–3, diffusion was disabled; however, it occurred in column 4 compensating photobleaching more
or less. Note that in the simulations that are presented in column 4 and in the case for which diffusion was
enabled, the radius and height of the simulated region were R ¼ 1.5 μm and H ¼ 4.5 μm, respectively;
however, only the focal part of the profile is shown here.
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along axes r and z during the 1st, 2500th, 5000th, 7500th,
10,000th, 20,000th, 40,000th, and 100,000th laser cycles. The
darker the color of the curve, the larger the number of the pre-
ceding laser cycles. As more and more laser pulses hit the sam-
ple, the number of fluorescent photons falls: we can observe the
evolution of the “dark hole” at the focus [see also Figs. 10(c), 10
(g), 10(j), and 10(k)]. Another noticeable feature is the appear-
ance of the small “hills” in the fluorescence profile next to the
focus. Their width is much smaller than that of the initial fluo-
rescent profile depicted by the uppermost grayish curve in each
plot. A distinct difference between the one- and two-photon
cases is that two-photon-induced photobleaching is restricted
to a smaller volume; therefore, the “walls of the hole” are steeper
in this case.

Figures 12(e) and 12(f) show the number of emitted photons
as a function of the distance of the photon source from the focus.
Figures 12(g) and 12(h) show the characteristic distances in the
case of different pulse numbers (i.e., different illumination dura-
tions): r50, r75, and r90 denote the minimal radii of spheres,
which are located at the focus and contain the volume cells
that emit 50%, 75%, and 90% of the fluorescent photons within
the sphere of radius R ¼ 1.5 μm, located at the focus. Along
with the average distance of the location of the photon emission
from the focus (ravg), these values can be used to characterize the
spatial resolution of the fluorescent method. The trends men-
tioned in the previous paragraph can also be observed in
these diagrams: the number of fluorescent photons (i.e., the sig-
nal) decreased gradually in time, especially in the focal region.
The average distance of the photon emission from the focus
shifted toward the periphery and the characteristic distances
increased; therefore, the resolution deteriorated because of pho-
tobleaching. This effect was more expressed in the case of the
one-photon-induced photobleaching.

3.2.3 Effect of the photobleaching cross-section

Next, we investigated the dependence of the fluorescent photon
number on the photobleaching absorption cross-sections. We

separately examined the cases of one- and two-photon-induced
photobleaching. We used σpb1 ¼ 5 × 10−23 cm2 and δpb2 ¼
6.534 × 10−54 cm4 s as references, and we swept these param-
eters in the range of three orders of magnitude. The results are
summarized in Fig. 13.

When we decreased σpb1 by a factor of 32, the number of
emitted photons increased by only 28%, whereas when we
increased σpb1 by the same factor, the number of emitted pho-
tons fell to 50% of the reference.

We obtained similar results for the case of two-photon-
induced photobleaching. In this latter case, the emitted-photon
number changed less (namely in the range between −38% and
þ17% with respect to the reference) compared with the one-
photon case, which can be explained by the fact that the two-
photon-induced photobleaching is more confined in space than
the one-photon-induced one (see Sec. 3.2.2).

Figure 14 shows the decay of photon emission in time due to
photobleaching. The thick curves belong to the aforementioned
reference cases (σpb1 ¼ 5 × 10−23 cm2 and δpb2 ¼ 6.534×
10−54 cm4 s); the reference photobleaching cross-section values
were both doubled (darker curves) and halved (lighter curves)
five times.

3.2.4 Effect of the diffusion

To investigate the effect of diffusion on the number of fluorescent
photons, we swept the diffusion constant D from 0 to
8 × 10−10 m2∕s. (For the sake of comparison, the diffusion
constant of glycine in water is about 10−9 m2∕s.24) Figure 15
shows the dependence of the number of emitted photons on
the diffusion constant. The curves with full and empty triangle
marks show the photon numbers obtained for the cases when pho-
tobleaching did not occur in the sample; that is, these constant
curves indicate the maximal photon number for the given illumi-
nations. We used two different laser powers: 25 and 40 mW. In
the 25-mW case, if the photobleaching cross-section was moder-
ate (σpb1 ¼ 5 × 10−23 cm2), diffusion was able to compensate

Fig. 11 Emission profile in the (a) 10th and (b) 100,000th laser cycles. The results depicted here are the
same as those in Figs. 10(e) and 10(g). Note the difference between the scales of the vertical axes of (a)
and (b).
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photobleaching. But when photobleaching was more intense (in
the case of higher laser power and/or higher photobleaching
absorption cross-section), then the number of fluorescent photons
decreased even if the diffusion coefficient was large. Additionally,
Fig. 15 illustrates that the number of fluorescent photons is more
sensitive to the change of the diffusion constant if photobleaching
is intensified.

3.2.5 Effect of the intersystem crossing

In the simulations presented up to this point, we disabled inter-
system crossing by setting its lifetime to∞. Here, we discuss the
effect of the opening of this relaxation route. Intersystem cross-
ing means a roundabout way for fluorophore molecules to return
from the excited state to the ground state, namely without pho-
ton emission; thus, it decreases the quantum efficiency.

Fig. 12 Spatial distribution of fluorescence and its time evolution caused by one- and two-photon-
induced photobleaching. (a)–(d) The number of emitted photons along axes r and z during the 1st,
2500th, 5000th, 7500th, 10,000th, 20,000th, 40,000th, and 100,000th laser cycles. The darker the
color of the curve, the latter the state is. (e) and (f) The number of emitted photons as a function of
the distance of the photon source from the focus. (g) and (h) The characteristic distances of fluorescence
over time: r 50, r 75, and r 90 denote the minimal radii of spheres which are located at the focus and contain
the volume cells that emit 50%, 75%, and 90% of the fluorescent photons within the sphere of radius
R ¼ 1.5 μm, located at the focus. The average distance of the location of photon emission from the focus
is denoted by linked black squares. Note the difference between the scales of the horizontal axes of (a)
and (b), as well as (c) and (d).
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The simulation results (Fig. 16) corresponded to the
expectations. The smaller the lifetime of intersystem crossing
(τISC) is, the fewer photons were emitted, especially if transi-
tion T1 → S0 was slow, i.e., τTS was large. The return from the
triplet state T1 to the ground state S0 takes time, hence with
every laser pulse, the number of fluorophore molecules in
the triplet state increased toward an equilibrium value
[Fig. 17(c)]. Meanwhile, also approaching an equilibrium,
the number of emitted photons fell, particularly at the focus
[Figs. 17(a) and 17(b)]. As a result, the spatial profile of photon
emission became flattened.

If intersystem crossing is permitted, then the fluorophore
molecules in the triplet state T1 might be photobleached by
the absorption of one or two additional photons. According

to the simulations of this scenario (not presented in detail),
these photobleaching transitions affect the photon emission pro-
file similar to those that start from the excited singlet state S1
(see Figs. 10 to 12). Nevertheless, in the former case, the evo-
lution of the photon distribution is also driven by intersystem
crossing, which flattens the profile with the “dark hole” at
the focus, formed by photobleaching.

4 Discussion
Although our model is founded on the physical principles pre-
sented in Sec. 2, its validation and calibration require experimen-
tal measurements. Besides the approximations and the neglected
factors indicated in the description of the model, the most remark-
able difference between the presented simulations and real

Fig. 13 Dependence of the number of emitted photons on the absorption cross-sections that describe
photobleaching. The photon numbers are depicted relatively to the reference photon numbers obtained
by simulations in which the photobleaching cross-section was set to (a) σpb1 ¼ 5 × 10−23 cm2 and
(b) δpb2 ¼ 6.534 × 10−54 cm4 s (denoted by larger squares). (The radius and height of the simulated
region were R ¼ 1.5 μm and H ¼ 4.5 μm, respectively.)

Fig. 14 Time evolution of the emitted-photon number in the case of different photobleaching cross-sec-
tions. The thick curve in each diagram belongs to the simulation case in which the photobleaching cross-
section was set to (a) σpb1 ¼ 5 × 10−23 cm2 and (b) δpb2 ¼ 6.534 × 10−54 cm4 s. These values were both
doubled and halved five times: the higher the photobleaching cross-section is, the lower and darker the
curve is. (The radius and height of the simulated region were R ¼ 1.5 μm and H ¼ 4.5 μm, respectively.)
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experiments is that our model computes probabilities and expect-
ation values of photon numbers while in reality there are discrete,
stochastic events: only whole molecules exist and only whole
photons are emitted. Thus, the experimentally measured signals
contain fluctuations and noise both in time and space, contrary to
the simulation results which are “smooth.” Theoretically, if the
experiments are repeated many times, then the average of their
results should approach to the simulation results.

We implemented the simulator program in MATLAB and ran
the simulations on a computer with a 2.4-GHz dual-core proc-
essor and 4-GB RAM. The run-time of a simulation case
depends on the number of volume cells (which is the function
of the cell size and the dimensions of the simulated volume), the
number of simulated laser pulses, the number of simulation
steps per laser cycle, the number of the enabled state transitions,
and whether diffusion is enabled. In terms of these factors, our
simulation cases varied from each other to a great extent, which
resulted in large differences in their run-times. For instance, the
emission profiles in Fig. 10 were calculated within less than a
minute if the diffusion was not enabled and the dimensions of
the simulation volume were R ¼ 0.5 μm andH ¼ 1.5 μm, but it

took 16 min when diffusion was enabled and both the radius and
the height of the simulation volume were three times larger. Not
surprisingly, increasing the number of simulation steps per laser
cycle lengthened the simulation extremely: the 128-steps-per-
cycle case resulted in a simulation time of 2.5 h. Presumably,
parallelization on a multicore architecture could significantly
accelerate the computation, especially when diffusion is dis-
abled in the simulation.

There are several possible application fields of the model:
taking into account the effects described above and using
more accurate fluorescent profiles might facilitate the interpre-
tation of the experimental data of several fluorescent techniques.
The model might help to determine the diffusion constants in
FRAP experiments and to solve the inverse problems of two-
photon and super-resolution microscopy (i.e., the reconstruction
of the fluorophore distribution from the measurement data) more
effectively, achieving a higher image quality. In addition, the
model might promote the optimization of the operating param-
eters (e.g., illumination laser power) of the measurement device
in a particular experiment. The photophysical model and its
parameters are, however, unknown for many fluorophores,

Fig. 15 Dependence of the number of emitted fluorescent photons on the diffusion constant. (The radius
and height of the simulated region were R ¼ 1.5 μm and H ¼ 4.5 μm, respectively.)

Fig. 16 Dependence of the number of emitted photons (a) on the lifetime of intersystem crossing (τISC)
and (b) on the lifetime of the transition T 1 → S0 (τTS). (The radius and height of the simulated region were
R ¼ 1.5 μm and H ¼ 4.5 μm, respectively.)
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which can limit the applicability of the model for such purposes.
Possibly, the simulator can also assist in the determination of
these parameters.

In this work, we simulated illumination with a fixed focus;
nevertheless, in many fluorescent techniques, the sample is
scanned with the laser beam or special illumination patterns
are used. Adapting the computational model to such experimen-
tal arrangements in order to simulate particular techniques needs
further work. In these cases, the cylindrical symmetry vanishes;
i.e., the computational time and memory requirements increase
to a great extent.

The presented model could be easily adapted for the inves-
tigation of fluorescence in one-photon-excited samples.
However, in this case, as one-photon excitation is less confined
in space than two-photon excitation, the size of the simulated
volume should be expanded, which would increase the simula-
tion time and the memory requirement.

We have already reported simulation results in this field
in a conference paper.25 At that stage of our work, we used
an equation given by Wang et al.26 to describe the instantaneous
illumination light intensity at a given point ðr; zÞ in a pulsed
Gaussian beam. The main drawback of Wang’s equation is
that for large values of the radial coordinate r, the function is
unbounded, which implies that the beam would carry infinite
energy.18 This effect becomes more severe as the pulse length
decreases. On the other hand, in the case of longer (such as
100-fs-long) pulses, Wang’s equation approaches the continu-
ous wave Gaussian beam. As the function which describes
the continuous Gaussian beam is computationally simpler, we
finally decided to use this latter one in the simulator.

Since the publication of our conference paper,25 we have dis-
covered an error in the former program code: a multiplier factor
was missing in the calculation of the illumination intensity from
the laser power. This is why we obtained approximately the
same excitation probabilities there for laser powers of 30 and
50 mW as here for 25 and 40 mW.

5 Conclusions
We presented simulation examples which demonstrate quantita-
tively how the illumination laser power, diffusion, and the
photodynamic parameters of the fluorophore (absorption

cross-section of photobleaching transitions, lifetime of intersys-
tem crossing, and transition T1 → S0) affect the number of fluo-
rescent photons and the three-dimensional distribution of
fluorescence. We demonstrated how photobleaching changes
the spatial distribution of photon emission, producing a “dark
hole” in the focus: the simulation results revealed that as
more and more laser pulses hit the sample and photobleaching
progresses, the most photons are not emitted from the focus but
from an ellipsoid situated around the focus. Increased laser
power, higher photobleaching cross-section, as well as longer
illumination can produce this “dark hole.” On the other hand,
diffusion can inhibit this phenomenon. Our results evidenced
that photobleaching not only decreases the number of emitted
photons, but also deteriorates the resolution of the fluorescent
techniques.
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Appendix: Pseudocode of the Algorithm

% calculation of probabilities of transitions and diffusion
during one simulation step

for each volume cell ðr; zÞ do
for each photon-absorption-induced state transition
A → B do
Prabs;A→Bðr; zÞ ← numerical solution of Eq. (23) by

MATLAB function ode45
end for
for each relaxation transition A → B do

Prrelax;A→Bðr; zÞ← numerical solution of Eq. (24) by
MATLAB function ode45
end for

Fig. 17 Time evolution of fluorescence in the occurrence of intersystem crossing. (a) and (b) The number
of emitted photons along axes r and z during the 1st;50th; 100th; : : : ;2000th laser cycles. The later
moment, the darker the color of the curve. (c) The number of emitted photons per laser cycle and
the number of molecules in state T 1 over time. (The radius and height of the simulated region were R ¼
1.5 μm and H ¼ 4.5 μm, respectively.)

Journal of Biomedical Optics 015001-17 January 2015 • Vol. 20(1)

Juhász and Csurgay: Fluorescence in two-photon-excited diffusible samples exposed to photobleaching. . .



end for
Prdiff ← value given by Eq. (36)
% initial state: every fluorophore molecule is in

ground state
for each volume cell ðr; zÞ do

S0ðr; zÞ←Ninit

for each other state A do
Aðr; zÞ←0

end for
end for
for i ¼ 1 → number of laser cycles do

% simulation of photon-absorption-induced transitions
for each volume cell ðr; zÞ do

for each photon-absorption-induced state transition
A → B do

ΔAA→Bðr; zÞ←A · Prabs;A→Bðr; zÞ
end for
for each state A do

Aðr; zÞ←Aðr; zÞ þP
∀X≠A½−ΔAA→Xðr; zÞþ

ΔAX→Aðr; zÞ�
end for

end for
for j ¼ 1→ number of simulation steps per laser cycle do

% simulation of relaxation transitions
for each volume cell ðr; zÞ do

for each relaxation state transition A → B do
ΔAA→Bðr; zÞ←A · Prrelax;A→Bðr; zÞ

end for
for each state A do

Aðr; zÞ←Aðr; zÞ þP
∀X≠A½−ΔAA→Xðr; zÞþ

ΔAX→Aðr; zÞ�
end for

end for
% simulation of diffusion along axes r, z, and the
third axis
for each volume cell ðr; zÞ do

Astaysðr; zÞ←A · ð1 − 2 · PrdiffÞ
Amovesðr; zÞ←A · Prdiff

end for
for each volume cell ðr; zÞ do

Aðr;zÞ←Astaysðr;zÞþAmovesðr−1;zÞþAmovesðrþ1;zÞ
end for
for each volume cell ðr; zÞ do

Astaysðr; zÞ←A · ð1 − 2 · PrdiffÞ
Amovesðr; zÞ←A · Prdiff

end for
for each volume cell ðr; zÞ do

Aðr;zÞ←Astaysðr;zÞþAmovesðr;z−1ÞþAmovesðr;zþ1Þ
end for
for each volume cell ðr; zÞ do

Astaysðr; zÞ←A · ð1 − 2 · PrdiffÞ

Amovesðr; z; �Þ ← value given by Eq. (37)
end for
for each volume cell ðr; zÞ do

Aðr; zÞ←Astaysðr; zÞ þ 2 · Amovesðr; z; �Þ
end for

end for
end for
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