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Abstract. The classification of erythrocytes plays an important role in the field of hematological diagnosis, spe-
cifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages
of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte
provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a
set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the
discrimination power of these features against 2-D features with a neural network classifier. The 3-D features
include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and
functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of
RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius,
elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized
by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of
biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experi-
mental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features.
Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection tech-
nique, which yields better discrimination results. We believe that the final feature set evaluated with a neural
network classification strategy can improve the RBC classification accuracy. © The Authors. Published by SPIE under a
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1 Introduction
Human blood contains different type of cells; however, red
blood cells (RBC) or erythrocyte are the most abundant cell
type. RBC contains hemoglobin, which binds to either oxygen
or carbon dioxide. This allows oxygen to be transported to
tissues and organs and carbon dioxide to be taken away during
microcirculation. The biconcave shape of the erythrocyte is
extremely important in the functionality of RBCs. It allows
the membrane to have a high surface area to volume (SAV)
ratio facilitating large reversible elastic deformation of the
RBC while squeezing through the tiny capillaries.1–3 Accord-
ing to its importance, it has drawn considerable attentions
into the pathology research in the clinical relevant blood dis-
eases. Pathological disorders can modify RBCs and lead to sig-
nificant alterations in its original shape.4 The consequences of
modified RBC often are observed as clinical symptoms ranges
from obstruction of capillaries and restriction of blood flow to
tissues to necrosis and organ critical damages.4–9 Also, counting
cell types in the blood sample is another important task for
investigating clinical status, which can be evaluated by well-
known methods such as complete blood count or RBC distribu-
tion width, which are part of cytometry field. Because an auto-
mated cell counter samples and counts so many cells, the results

are reliable in most of the cases.10 However, certain abnormal
cells in the blood may not be identified correctly, requiring
manual review and identification of any abnormal RBCs the
instrument could not categorize. This information can be very
helpful regarding identifying the cause of a patient’s anemia.
Abnormal increase or decrease in RBC counts as revealed in
a complete RBC count may indicate that you have an underlying
medical condition that calls for further evaluation.

In the case of RBC, biconcaves are a substantial type in a
healthy person, but there are other RBCs types with the different
percentage varying between healthy and unhealthy persons.
It has been shown that the percentages of different types of
RBCs will be distinct according to the RBC diseases type.10

Accordingly, it is essential to measure the percentage of each
RBC type in a blood sample consists of multiple RBCs for diag-
nosis and drug testing subjects. Typically, the diagnosing is per-
formed by a human expert, and it shows some drawbacks, such
as time-cost consuming and inaccuracy. Generally, experts visu-
alize the sample in the images through a microscope based on
their subjective knowledge from the viewpoint of intensity,
morphology, texture, and so on based features. Usually, small-
scale differences in the features are overlooked by human eyes
especially for the border-line diagnostic scenario.

However, the situation has changed completely by the emer-
gence of automatic classification algorithms. These techniques
have been applied to problems in biology and have shown prom-
ising results for automatic recognition and classification of
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various micro-organisms.11,12 Among the classification meth-
ods, the pattern recognition neural network (PRNN) has been
suggested in nonlinear classification problems, such as RBC
classification and counting.13–15 The fundamental benefit of
artificial neural network (ANN) is nothing, but it does not use
any mathematical model since ANN learns from data sets and
identifies patterns in a sequence of input and output data without
any previous assumptions about their type and interrelations.
Also, ANN eliminates the drawbacks of the conventional meth-
ods by extracting the wanted information using the input data.

In conventional RBC classification problems, the experts
deal with two-dimensional (2-D) erythrocyte images obtained
by conventional microscopes and cameras.13,16–19 These meth-
ods generally have good performance but most of them have
a significant number of features since they need to discriminate
groups by utilizing 2-D features. However, in the case of RBC,
which is transparent or semitransparent, we cannot take advan-
tage of conventional intensity-based microscopes. Therefore, we
believe that to obtain a satisfied level of accuracy, the classifi-
cation and recognition should also take into account the three-
dimensional (3-D) shape of RBCs. Among the techniques that
can provide 3-D images of transparent or semitransparent cells,
digital holographic microscopy (DHM) has shown promising
results.20–24 Also, the DHM technique has been utilized in
the classification of RBC using 2-D and 3-D features since
DHM can provide quantitative phase image.25–27 In studying
RBC, DHM enables the measurement of 3-D features, such
as mean corpuscular volume, surface area, SAV ratio, function-
ality factor, sphericity index, and sphericity coefficients.28,29

Chemical parameters of MCH and MCHSD can also be
obtained due to DHM. Accordingly, we believe that any auto-
mated RBC classification that can distinguish different RBC
types accurately should take into accounts the benefits of
DHM imaging technique.

In this study, four main types of RBC shapes, biconcave
(doughnut shape), flat discs, stomatocyte, and echinospherocyte
are interested RBCs for the quantitative determination of the
percentage of RBC types in multiple human RBCs. The reason
for differentiating doughnut-shaped and flat-disc RBCs is that it
can help in the applications of separating old cells versus young
cells. It has been shown that during the stages of biconcave-echi-
nocyte transformation in so-called storage lesion, biconcave
cells become flat discs (loss of ATP results in a stiffer cytoske-
leton that pulls the bilayer) after a few weeks of storage in blood
bank.29–34 Transfusion of these old samples might have critical
consequences according to the previous studies.35,36

At first, RBCs are visualized by off-axis DHM and the quan-
titative phase images are reconstructed by the numerical
algorithm.37,38 Then, single RBCs are extracted from images
with multiple RBCs using the watershed algorithm.39 At the
next step, following 2-D features of projected surface area
(PSA), perimeter, radius, elongation, and PSA to perimeter
rate are extracted. In this paper, we have ignored extracting
2-D features related to the inner section of RBC, unlike the pre-
vious method proposed by Refs. 25, 26, since flat-disc and echi-
nospherocyte RBCs do not have the inner section. Also, volume,
surface area, SAV ratio, average RBC thickness, sphericity
index, sphericity coefficient and functionality factors, and MCH
and MCH surface density (chemical properties of RBC) are
extracted from single RBCs. The latter feature-set is related
to the morphological and biochemical properties of RBC 3-D
profile. Along with the 3-D features, two new features related

to the ring section of RBC are introduced. These features add
significant information to the classification model and increase
the discrimination power of the classifier. Then, each feature set
is fed into PRNN, separately, and the classification results are
compared using 10-fold cross validation (CV) technique. Since
we are involved in a classification model with nonlinear decision
boundary, we have decided to use PRNN strategy. In PRNN, the
training algorithm is Bayesian regulation back-propagation,
which updates the weights according to Levenberg–Marquardt
optimization technique and the activation function for midlevel
layers is hyperbolic tangent sigmoid.

Finally, to propose the best feature set, concerning both 2-D
and 3-D features, sequential forward feature selection (SFFS) is
utilized here. It has been shown that the best performance of
a classification model can be achieved by selecting the most
informative features and remove noisy ones that are either
redundant or irrelevant.40 Indeed, reducing the number of fea-
tures can shorten training time, reduce the complexity of clas-
sifier, and simplify the model for interpretation goals. SFFS
technique tries to select a subset of variables that best predict
the data by sequentially selecting features until there is no
improvement in the prediction.

In this paper, we have extracted 108 biconcave RBCs from a
healthy sample stored for 1 day in the blood bank, 106 samples
of stomatocyte shape from a sample with predominantly of
stomato cells, 38 samples of flat-disc shape, and 71 samples of
echinospherocyte shape for training and testing PRNN. Flat-disc
and echinospherocyte cells are extracted from RBC samples
stored in the blood bank for 40 days and 57 days, respectively.
Performance comparison is evaluated by calculating misclassi-
fication rate of 10-fold CV technique. It is often claimed that
leave-one-out-cross-validation (LOOCV) has higher variance
than k-fold CV, and that it is because the training sets in
LOOCV have more overlap. This makes the estimates from dif-
ferent folds more dependent than in the k-fold CV and, hence,
increases the overall variance.41

Our experimental results demonstrate that the PRNN trained
by 3-D features gives a good performance in classifying and
counting RBCs in multiple human RBCs in an automated man-
ner in comparisons with the 2-D features. In addition, we intro-
duce the best set of features that combines 2-D and 3-D features
to improve the RBCs classification accuracy. We believe that the
final feature set evaluated with the presented neural network
classification strategy can provide better discrimination results.

This paper is organized as follows. Section 2 explains the
general scheme of the off-axis DHM to image RBCs and RBCs
preparation. Section 3 explains 2-D and 3-D features extracted
in this research and gives a short review about them. In Sec. 4,
we will focus on designing the PRNN and counting different
RBCs in multiple RBCs, automatically. The experimental
results and discussions are provided in Sec. 5. Finally, the con-
clusion is presented in Sec. 6.

2 Off-Axis Digital Holographic Microscopy
and RBC Preparation

2.1 Off-Axis Digital Holographic Microscopy

Figure 1 shows the off-axis DHM based on the Mach–Zehnder
interferometer geometry.42 In this optical setup, light from a
coherent source (HeNe laser diode source λ ¼ 682 nm) is split
into reference and object beams by a beam splitter. The object
beam is transmitted through the RBC sample and magnified by
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a 40 × ∕0.75 NA microscope objective and interferes with the
reference beam. The interference patterns between the diffracted
object beam and the reference beam are recorded onto a CCD
camera. The reconstruction of the RBC wavefront is obtained
from the recorded hologram by using the numerical algorithm
described in Refs. 37 and 38.

After reconstructing RBC phase images, single RBCs are
extracted by the maker-controlled watershed segmentation
algorithm.39 Figure 2 shows a reconstructed phase image of
a sample consisting of biconcave, flat-disc, and stomatocyte
shape RBCs. This image shows that in a single sample it is
possible to see RBC with different morphologies.

2.2 RBC Preparation

The RBCs of healthy laboratory personnel were obtained
through the Laboratoire Suisse d’ Analyse Du Dopage, CHUV
and stored at 4°C during the storage period. The DHM measure-
ments were performed several days after the blood was collected
from the laboratory personnel. A total of 100 to 150 μl of RBC
stock solution was suspended in a high-efficiency particulate air
(HEPA) buffer at 0.2% hematocrit for predominantly stomato-
cyte and discocyte-shaped RBCs while at a concentration of
∼0.15% for predominantly echinocyte-shaped RBCs. A total
of 4 μl of the erythrocyte suspension was diluted to 150 μl
of the HEPA buffer and introduced into the experimental cham-
ber, including two cover slips separated by spacers 1.2 mm
thick. The cells were incubated for 30 min at a temperature
of 37°C before mounting on the chamber on the DHM stage.
All experiments were performed at room temperature (22°C).

3 Feature Extraction

3.1 Two-Dimensional Features

After segmentation step and extracting many single RBCs,
features can be extracted. We first start with 2-D features.
Following features are extracted in 2-D case.

Elongation of the RBC is a measure of the ratio of width to
length for oblong RBCs. It can be computed from the chain code
by summing the number of each type of elements 0 to 7 and
combining 0 and 4, 1 and 5, 2 and 6, and 3 and 7.16 Average
and STD values of the above features are in the agreement with
previously reported values (data not shown here).25,26

3.2 Three-Dimensional Features

Since some 3-D features require thickness of the RBC, we first
need to convert phase image into thickness image. Accordingly,
the thickness value hði; jÞ for each pixel of ði; jÞ with phase
value φði; jÞ in a phase image can be expressed as28,29

EQ-TARGET;temp:intralink-;e001;326;468hði; jÞ ¼ φði; jÞ × λ

2πðnrbc − nmÞ
; (1)

where φði; jÞ is the phase value in radians, and the refractive
index of RBCs, nrbc, has been measured with a dual-wavelength
DHM. Here, nrbc is 1.396 with no significant difference among
groups of RBCs. The index of refraction of the HEPA medium,
nm, is 1.3334. Surface area is another important property and has
the main contribution in different 3-D features. Generally speak-
ing, the surface area of the RBC is the surface area of the
membrane mesh plus PSA. The method in this paper splits
and divides RBC surfaces into smaller regular areas (triangles
here) and adds these smaller areas to give the entire surface
area. Understandably, the accuracy of such a calculation is
dependent on the smaller area chosen.29

Fig. 1 Schematic representation of an off-axis DHM setup.

Fig. 2 Reconstructed image and three different RBCs inside. A is a
flat disc RBC, B is a biconcave RBC, and C is a stomatocyte. White
bar is 10 μm.
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3-D features listed in Table 1 are extracted in this paper.
We only give a short description of the eight features related
to the morphological properties of RBC, but interested readers
can refer to Refs. 28 and 29 for the detail of each feature.
Regarding the calculation of three features (F9-F11), we
obtained many points over the ring section of RBC by applying
two techniques. First, we estimate the ring section (blue trian-
gles in Fig. 3) by calculating the radius of a circle having the
area of the projection of RBC on X-Y plane (the ring is around
three-fourth of the RBC radius). Then, we update the position
of each point on estimated ring (blue triangles) by finding
the thickest point in a 3 × 3 neighbor (red stars in Fig. 3).
From now on we name the red stars as RPs. The single green
point shows the center of RBC regarding the calculation of sphe-
ricity coefficient. In this study, we have decided to obtain 30 RP

points. The reason is that the total number of points on the ring
section for the stomatocyte RBCs is between 90 and 120 points
according to our calculation. Also, since we are looking at
a 3 × 3 neighborhood around the blue triangles to find the
point on the ring (red stars), there is high possibility of overlap-
ping between red stars. For example, Fig. 4 shows the position
of red stars and blue triangles when we increase the number of
points. We can see that by increasing the number of red stars
many of them overlap.

We believe that earlier 3-D features can distinguish among
different RBCs since they are related to the 3-D profile
of RBC. The statistic t-test using two-sample Kolmogorov–
Smirnov test revealed that some of these features are indepen-
dent (data not shown). Table 2 shows average and STD values of
each feature for each RBC type.

4 Pattern Recognition Neural Network
ANNs are highly simplified mathematical models of biological
neural networks having the ability to learn and provide mean-
ingful solutions to the problems with high-level complexity
and nonlinearity. The ANN approach is faster compared to
its conventional techniques, robust in noisy environments, and
can solve a wide range of problems. Due to the advantages,
ANNs have been used in numerous applications.13–15 A typical
ANN is presented in Fig. 5. An important application of neural
networks is pattern recognition that can be implemented by
using a feed-forward neural network with a specific training
function and specific function in the output layer. During train-
ing, the network is trained to associate outputs with input pat-
terns. When the network is used, it identifies the input pattern
and tries to output the associated output pattern.

The information processing in the ANN strategy starts from
the input layer to the hidden layer (from one hidden layer to
another one if there are more than one) and from the last hidden
layer to the output layer. A synaptic weight is assigned to each
link to represent the relative connection strength of two nodes
at both ends in predicting the input-output relationship. yj (the
output) of any node j, is given as

EQ-TARGET;temp:intralink-;e002;326;333yj ¼ f

�Xn
i¼1

WiXi þ bi

�
; (2)

where Wi is the connection weight, Xi denotes the i’th input of
node j, n is the number inputs to node j, and bj is the bias value.
Function f or so-called activation function determines the
response of a node to the total input signal that is received.
Generally, the activation function for hidden layer in PRNN
is hyperbolic tangent sigmoid transfer function due to the fol-
lowing advantages: (1) it limits the range of data to values
between −1 and 1. This function is almost linear near the
mean. It is smooth and has monotonic nonlinearity property
at both extremes, (2) it remains differentiable everywhere and
the sign of the derivative is unaffected by the normalization.
Generally, the differentiable requirement is needed for hidden
layers and hyperbolic tangent sigmoid transfer function is
often recommended as being more balanced, (3) the 0 for hyper-
bolic tangent sigmoid transfer function is at the fastest point
(highest gradient or gain) and not a trap, (4) the hyperbolic tan-
gent sigmoid transfer function suit the output layer to the com-
petitive outputs of softmax function, (5) since it can be estimated
by ð2∕1þ e−2xÞ − 1 it can be implemented faster in MATLAB®.

Table 1 3-D features descriptions.

Feature name Description

3-D-F1 AT
AT ¼

P
k
i¼1

P
l
j¼1

hði ;jÞ
k×l [hði ; jÞ is

the thickness at ði ; jÞ’th pixel]

3-D-F2 Volume (V ) V ≅ p2 Pk
i¼1

Pl
j¼1 hði ; jÞ

3-D-F3 TVS area Surface area of the upper view
of erythrocyte calculated by
dividing surface into small

triangles and then the summation
of each triangle’s surface area

3-D-F4 TVS area volume ratio TVSV ¼ TVS
V

3-D-F5 Total surface area (SA) SA ¼ TVSþ PSA

3-D-F6 Surface area volume
ratio (SAV)

SAV ¼ SA
V

3-D-F7 Sphericity index (SI) SI ¼ 4πV 2∕3

ð4π∕3Þ2∕3SA

3-D-F8 Functionality factor
(FF)

f ¼ SA
4πR2

3-D-F9 Sphericity coefficient
(SP)

SP ¼ d c
d r

(dc and d r are
thickness values in RBC
center and ring section,

respectively)

3-D-F10 STD of thickness
in ring section

This feature measures variation
in the thickness of RPs in the

ring of RBC

3-D-F11 Upper side of the
ring/lower side of ring

This feature is calculated by
dividing four maximum RPs

by four minimums

3-D-F12 Mean hemoglobin
(MCH)

MCH ¼ 10φ̄ðPSAÞ
2πα (φ̄ is the average

phase value, λ is the wavelength
of the light source of the setup,

and α ¼ 0.00196dl∕g is a
constant known as the specific
refraction increment related to
the protein concentration)

3-D-F13 MCH surface density
(MCHSD)

MCHSD ¼ MCH
PSA

Journal of Biomedical Optics 126015-4 December 2016 • Vol. 21(12)

Jaferzadeh and Moon: Human red blood cell recognition enhancement with three-dimensional. . .



For output layer in PRNN, the activation function is soft-
max transfer function (normalized exponential) that can be inter-
pretable as posterior probabilities for a categorical target varia-
ble. It is highly desirable for those outputs to lie between zero
and one and to sum to one. The purpose of the softmax activa-
tion function is to enforce these constraints on the outputs. Let
the input to each output unit be ql, l ¼ 1; : : : ; k, where k is the
number of classes. Then the softmax output yl is

EQ-TARGET;temp:intralink-;e003;63;102yl ¼
eqlP

k
m¼1 e

qm
: (3)

According to Eq. (3), sum of all “y”s is equal to unity and can
be interpreted as the posterior probability for the final decision.
The training algorithm updates the weight and bias values
according to Levenberg–Marquardt optimization. It minimizes
a combination of squared errors and weights and then deter-
mines the correct combination so as to produce a network
that generalizes well (Bayesian regularization).43

5 Experimental Results and Discussion
In this experiment, 108 RBCs are labeled as biconcaves,
106 RBCs labeled as stomatocytes, 38 RBCs are labeled as

Fig. 3 3-D representation of four RBC categories and points on the ring section. (a) A typical biconcave
sample, (b) a flat disc with center raised, (c) a stomatocyte RBC, and (d) a spherocyte RBC.

Fig. 4 3-D representation of RBC ring section with red stars and blue triangles on it. (a) Number of points
is 60 and (b) number of points is 600.
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flat-disc, and 71 RBCs labeled as echinospherocytes. Four sam-
ples of each group are shown in Fig. 6. Simulations are all
executed on a 64-bit Windows 7 computer with a 3.60-GHz
Intel Core i7-4790 CPU, 8 GB RAM, and 8 cores. The perfor-
mance of the classification model is assessed by utilizing 10-
fold CV check. Put it simply, the data set is divided into 10 sub-
sets, and the test is repeated 10 times. Each time, one of the 10
subsets is used as the test set and the other 9 subsets are put
together to form a training set. Then, the average misclassifica-
tion error across all 10 trials can show the overall misclassifi-
cation error. PRNN consists of one input, output layer, and
three hidden layers. Number of neurons in each hidden layer
is 5, 10, and 5, respectively. Neuron numbers are obtained

by trial-and-error technique. All the simulations codes are
implemented in MATLAB® 2014.

5.1 Comparison Between 2-D and 3-D Features

In the case of 2-D features (Table 3), 10-fold CV revealed that
the total misclassification rate is significantly high. In detail,
misclassification of each group is: flat-disc 64%, stomatocyte
13.4%, biconcave 32.3%, and echinospherocyte are 4.2%.
Only echinospherocyte RBCs can be accurately classified by
taking into account 2-D features while other categories have
significant error. According to the confusion matrix, PRNN
confuses between biconcaves and flat-discs by using 2-D

Table 2 3-D features (mean� STD).

Biconcave Flat-disc Stomatocyte Echinospherocyte

Average thickness (μm) 2.18� 0.3 2.27� 0.25 2.75� 0.36 4.47� 0.36

Volume (μm3) 93.23� 13 103.29� 14.72 95.85� 11.52 101.91� 16.4

TVS area (μm2) 103.85� 15 94.50� 9.62 106.04� 12.39 95.65� 10.6

TVS area volume ratio (μm−1) 1.12� 0.09 0.92� 0.05 1.11� 0.1 0.95� 0.06

Total SA (μm2) 148.32� 16.38 143.21� 12.48 147.32� 16.11 120.76� 11.79

SA volume ratio (μm−1) 1.61� 0.17 1.40� 0.13 1.55� 0.18 1.19� 0.09

Sphericity index (SI) 0.40� 0.18 0.74� 0.04 0.69� 0.06 0.87� 0.032

Functionality factor (FF) 0.86� 0.16 0.74� 0.07 0.93� 0.19 1.21� 0.14

Sphericity coefficient (SP) 0.67� 0.05 0.82� 0.06 0.5799� 0.21 1.16� 0.14

STD of thickness in
ring section

0.0332� 0.021 0.054� 0.018 0.1321� 0.096 0.1254� 0.03

Upper side of the
ring/lower side of ring

1.31� 0.11 1.25� 0.09 1.93� 0.44 1.44� 1.14

MCH (pg) 31.29� 4.55 34.68� 5.01 32.17� 3.94 34.29� 5.51

MCHSD (pg∕μm2) 0.68� 0.1 0.71� 0.08 0.85� 11 1.39� 0.11

Fig. 5 Feed-forward ANN configuration with five input nodes, two output nodes, and two hidden layers.
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features (data not shown). In contrast, 3-D features explained
in Table 1 generate more accurate and interesting results.
According to the results of 10-fold CV, misclassification rates
are 0%, 1.6%, 3.2%, and 0% for flat-disc, stomatocyte, bicon-
cave, and echinospherocyte RBCs, respectively. Table 4 shows
the classification error for 2-D and 3-D features. It is noted that
the presented neural network classification strategy was used to
evaluate the discrimination power of the feature set based on
3-D morphological properties of RBC against 2-D features.
The classification results obtained with the neural network
demonstrate that the 3-D features can be more effective in RBC
classification than the 2-D features.

Fig. 6 Samples of each RBC group used in this research: (a) four samples of flat disks, (b) four samples
of stomatocyte morphology, (c) four samples of biconcave RBC, and (d) four samples of spheroechino-
cyte RBC.

Table 3 2-D feature descriptions.

Feature name Description

2-D-F1 PSA PSA ¼ N × p2 (p is pixel size in
holographic image and N is
number of pixels within RBC)

2-D-F2 Perimeter (Pr) Length of the RBC boundary

2-D-F3 Circularity (Ci) Ci ¼ Pr 2
PSA

2-D-F4 Elongation (El) Orientation of chain code in the
cell boundary

2-D-F5 Radios (R) Radius is estimated by considering
the radius of a circle having the area

of the PSA R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSA∕π

p

2-D-F6 PSA/perimeter
(PSP)

PSP ¼ PSA
Pr

Table 4 Misclassification results of 2-D and 3-D features.

Flat-disc Stomatocyte Biconcave Echinospherocyte

2-D features 64% 13.4% 32.3% 4.2%

3-D features 0% 1.6% 3.2% 0%
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In another experiment, we evaluated the normalized mutual
information between each feature in 2-D and 3-D features.40 In
the case of 2-D features, it turns out, as shown in Table 5, that
there is big mutual information among some features. Mutual
information is the amount of information that two features
share. If the mutual information between the two features is
large (small), the two features are closely (not closely) related.
If the mutual information becomes zero, the two features are
independent. For example, 2-D-F1 has significant mutual infor-
mation with features 2-D-F2, 2-D-F4, 2-D-F5, and 2-D-F6
(see first row of Table 5). Therefore, this feature is statistically
redundant and cannot add significant information.

5.2 Combining 2-D and 3-D Features and Select
the Best Feature-Set

We believe that the best classification model should take into
account not only 3-D features but also 2-D features.
However, it is worth mentioning that not any feature can add
significant information to the classification model. Therefore,
we believe that the performance of any classification model
can be enhanced by taking advantages of feature selection
(FS) strategy. In FS, we seek to find the best set of the features
that has the strongest ability (or strong) to distinguish each class.
Generally speaking, FS preserves the original features intact;
features deemed unimportant/irrelevant/redundant are simply
eliminated from further consideration while selecting only
those features that significantly contribute to the classification
problem. Therefore, FS can reduce the number of features
(variables) of the classification problem and make the model
simpler (or less complex) and shorten training time.40 We
also implemented FS in this research by using SFFS technique.
Generally speaking, in SFFS features are sequentially added to
an empty candidate set until the addition of further features does
not decrease the criterion. It has two components of an objective
function, called the criterion, and a sequential search algorithm.
In former, common criteria are misclassification rate for classi-
fication objects (similar in this paper) and mean squared error
for regression models. A sequential forward search algorithm
adds features from a candidate subset while evaluating the cri-
terion. Since an exhaustive comparison of the criterion value at
all 2n subsets of an n-feature data set is typically infeasible
(sometimes feasible but time-consuming), sequential searches
grow the candidate set. It turns out that the following features
of average RBC thickness (3-D-F1), top view surface (TVS)
area volume ratio (3-D-F4), sphericity coefficient (3-D-F9),

the upper side of the ring divided by lower side of the ring
(3-D-F11), and perimeter (2-D-F2) can better classify multiple
RBCs in this research. Our experimental results also show that
adding more features does not add significant discrimination
ability to the final classification model. As it has been mentioned
earlier, SFFS is responsible for adding or removing features
from the final feature set. One component of SFFS is the
objective function, which here is the misclassification rate.
SFFS starts from an empty set and add features one by one
to the set and evaluates the misclassification rate. If there is a
significant change in the objective function (misclassification
rate) then the feature can be added to the final feature set
(see Table 6).

According to Table 6 after adding the 7th and 8th features,
the misclassification rate never changes. It means that they have
no contribution to the final feature set. Adding the 6th feature
decreases the misclassification rate marginally but we still did
not consider it as part of the feature set since we wanted to keep
the final feature set as small as possible (only five features).

Figure 7 shows the data distribution RBCs for each selected
feature. We can see that the distribution of average RBC thick-
ness of echinospherocyte RBCs has almost no overlap with
other distributions [Fig. 7(a)]. Table 7 shows misclassification
rate of the final feature-set and PRNN approach.

The confusion matrix of the test set shows that PRNN some-
times confuses stomatocytes and echinospherocytes because
there are cases in which RBC has a morphology similar to
both stomatocyte and echinospherocytes (see Fig. 8).
According to Fig. 8, we can see that RBC is similar to both
stomatocyte and echinospherocytes morphology and posterior
probability for belonging to stomatocyte and echinospherocyte
categories are 0.33 and 0.66, respectively. Even for a human
examiner, it can be difficult to put it in the correct category.

In another experiment, we tried to count different types of
RBCs in five quantitative phase images with multiple RBCs.
Images are inspected visually by the human inspector and then

Table 5 Normalized mutual information between 2-D features.

2-D-F1 2-D-F2 2-D-F3 2-D-F4 2-D-F5 2-D-F6

2-D-F1 1 0.61 0.13 0.37 0.31 0.33

2-D-F2 0.61 1 0.057 0.25 0.071 0.37

2-D-F3 0.13 0.057 1 0.12 0.7 0.014

2-D-F4 0.37 0.25 0.12 1 0.15 0.14

2-D-F5 0.31 0.071 0.7 0.15 1 0.04

2-D-F6 0.33 0.37 0.014 0.14 0.04 1

Table 6 Misclassification rate after adding each feature to the feature
set.

Features added to the set
Criterion value

(misclassification rate)

Average RBC thickness (3-D-F1) 0.252396

RBC perimeter (2-D-F2) 0.134185

TVS area-volume ratio (3-D-F4) 0.0670927

Sphericity coefficient (3-D-F9) 0.0607029

The upper side of the ring
divided by lower side of the
ring (3-D-F11)

0.0511182

Adding next feature to the
feature set (sixth feature)

0.479233

Adding next feature to the
feature set (seventh feature)

0.479233

Adding next feature to the
feature set (eighth feature)

0.479233
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results are presented. In Fig. 9(a) stomatocyte RBCs are dom-
inant (flat discs 0/80, stomatocytes 58/80, biconcave 8/80, and
echinospherocyte 14/80) and in other images biconcave RBCs
[Fig. 9(b) has following flat discs 2/27, stomatocytes 5/27,
biconcave 20/27, and echinospherocyte 0/27] and echinospher-
ocytes are dominant [Fig. 9(c) shows RBC types of flat-disc
0/49, stomatocytes 5/49, biconcaves 6/49, and echinosphero-
cytes 38/49, and Fig. 9(d) shows RBC types of flat-disc 0/63,
stomatocytes 3/63, biconcaves 1/63, and echinospherocytes
59/63]. Figure 9(e) shows an image with 40 days storage
time with many flat-disc RBCs (flat-disc: 16/36, stomatocytes:
7/36, biconcaves: 5/36, and echinospherocytes: 8/36). The
numbers in parenthesis show the number of each morphology

obtained by the human inspector. At first, each image is seg-
mented into many RBCs since feature extraction should be
applied at the single cell level. Then, the percentage of the dif-
ferent types of RBCs in the RBC phase images is calculated
(see Fig. 9). As expected, the classifier showed that at the
first sample stomatocyte RBCs are dominant. In contrast, in
the second and fifth figures biconcave and flat-disc RBCs
are the major types. Third and fourth figures illustrate that
echinospherocytes are dominant RBCs. Although there is
a small error in counting nondominant RBCs, the main and
important thing is counting and reporting the dominant type
for further investigation.

According to the results, the proposed feature set and clas-
sifier can automatically count and categorize different types of
RBCs in human RBCs by taking advantages of 2-D and 3-D
profiles of RBC. The classifier is helpful to assess RBC-related
abnormality since the ratio of the different types of RBCs is
associated with certain types of diseases. There are some dis-
advantages in using NN technology regarding the classifica-
tion such as there is no formula for the number of nodes
and hidden layers. Generally, these numbers in the network
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Fig. 7 Data distribution of the best feature set. (a) Average thickness value. (b) Sphericity coefficient.
(c) Upper side of the ring/lower side of the ring. (d) Top view surface area volume ratio. (e) Perimeter.

Table 7 Misclassification results for the best feature set obtained by
sequential features selection technique.

Flat-disc Stomatocyte Biconcave Echinospherocyte

Best feature set 0% 0.9% 3.1% 0%
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are problem dependent and are decided by the trial-and-error
method.

We believe that DHM, by providing the quantitative phase
images, allows for doing different analysis especially classifica-
tion goals. For example, someone can easily classify echino-
echino-spherocyte from the rest of cells easily by using a
conventional binary support vector machine (SVM) classifier
and one or two features. Figure 10(a), e.g., shows the density
of average cell thickness of echinospherocytes against other
RBCs. Any binary classifier can be used to separate these

two groups. Figure 10(b) shows the scattering of two groups
based on average thickness (AT) value and surface area, and
an SVM classifier with its boundary region.

6 Conclusions
Automatic classification of different types of RBCs in human
RBC is a challenging and important problem for pathological
diagnosis. In particular, as far as RBCs are concerned, classifi-
cation based on their 3-D profile is highly relevant. Another
issue is that since demands on laboratories are ever increasing

Fig. 8 An RBC sample that confuses neural network, resembles both stomato and spherocyte. (a) 3-D
representation and (b) representation on X -Y plane.

Fig. 9 Five RBC samples and counting results. (a) Flat-disc: 0%, stomatocytes: 76.2% (61/80), bicon-
cave: 11.25% (9/80), and echinospherocyte: 10% (8/80). (b) Flat-disc: 7.40% (2/27), stomatocytes:
18.51% (5/27), biconcave: 74.07% (20/27), and echinospherocyte: 0%. (c) Flat-disc: 0%, stomatocytes:
12.24% (6/49), biconcave: 10.2% (5/49), and echinospherocyte: 77.55% (38/49). (d) Flat-disc: 0%, sto-
matocytes: 7.94% (5/63), biconcave: 1.59% (1/63), and echinospherocyte: 90.4% (57/63). (e) Flat-disc:
47.22% (17/36), stomatocytes: 25% (9/36), biconcave: 19.5.2% (7/36), and echinospherocyte: 8.3%
(3/36).
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and funding and staffing levels are generally below the desired
level, the implementation of a system that shortens staff time,
cost-effective, and noninvasive is greatly desired. In this
paper, we have presented and assessed the use of PRNN applied
to the 2-D and 3-D features of RBCs obtained through DHM in
order to categorize and count biconcave, stomatocyte, flat-disc,
and echinostomatocyte RBCs in an RBC sample with multiple
types. Six 2-D features and 13 3-D features have been extracted
and classification results are compared right after. Our experi-
mental results show that the 3-D features have more useful infor-
mation in RBC classification. In addition, FS shows that average
RBC thickness, TVS area volume ratio, sphericity coefficient,
the upper side of the ring divided by lower side of the ring,
and RBC perimeter can better classify RBCs into the desired
categories. The experimental results and the performance
imply that the final feature set can help in classifying and count-
ing RBCs, which is substantially important in analyzing RBC
abnormality and shape-related diseases.
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