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Abstract. Fluorescence molecular tomography (FMT) is a rapidly growing imaging method that facilitates the
recovery of small fluorescent targets within biological tissue. The major challenge facing the FMT reconstruction
method is the ill-posed nature of the inverse problem. In order to overcome this problem, the acquisition of large
FMT datasets and the utilization of a fast FMT reconstruction algorithm with sparsity regularization have been
suggested recently. Therefore, the use of a joint L1/total-variation (TV) regularization as a means of solving the
ill-posed FMT inverse problem is proposed. A comparative quantified analysis of regularization methods based
on L1-norm and TV are performed using simulated datasets, and the results show that the fast composite
splitting algorithm regularization method can ensure the accuracy and robustness of the FMT reconstruction.
The feasibility of the proposed method is evaluated in an in vivo scenario for the subcutaneous implantation of
a fluorescent-dye-filled capillary tube in a mouse, and also using hybrid FMT and x-ray computed tomography
data. The results show that the proposed regularization overcomes the difficulties created by the ill-posed
inverse problem. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.2.026012]
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1 Introduction
Small-animal fluorescence molecular tomography (FMT) is a
high-sensitivity, nonionizing, and relatively low-cost imaging
modality that enables high-throughput preclinical studies in
the fields of drug development, dermatological research, and
intraoperative imaging.1,2 FMT three-dimensionally (3-D)
resolves the biodistribution of fluorescent markers accumulated
in the target tissue of a live animal. In FMT, a near-infrared
(NIR) light source at the excitation wavelength is projected
onto the test subject at different positions. The excitation
light propagates diffusely into the tissue, and some of the pho-
tons are absorbed by fluorochromes, which re-emit part of the
energy at a longer wavelength. Then the fluorescence-excitation
light intensities are measured by detectors placed around the
subject. This measurement process is repeated for several source
positions, so as to obtain a dataset for reconstruction of the
fluorochrome concentration. In modern FMT systems, detection
is performed using a charge-coupled-device (CCD) camera in
noncontact mode. Recently, FMT technology has experienced
rapid development as a result of advances in 360 deg noncontact
projection systems.

The first FMT technique involving noncontact geometry was
implemented by employing fibers to deliver and collect photons
from the animal periphery using a photomultiplier tube.3,4 The
FMT imaging performance was then improved by introducing
full noncontact excitation and collection of the diffuse fluores-
cent emission using a CCD.5 Noncontact detection offers

flexibility in that the choice of detector and its positioning on
the imaging surface can be optimized, while fiber–tissue contact
effects are also avoided. Recently, a free-space FMT 360 deg
projection acquisition system was developed, in which the
fan beam is rotated around the specimen and data can be gath-
ered with a 0.5- to 3-mm spatial resolution.6,7 Such implemen-
tations are reasonably flexible as regards integration with other
imaging modalities, such as x-ray computed tomography (CT).
However, the resultant integrated imaging systems generate
large datasets that require long computational time and large
storage capacity. Consequently, it is necessary to develop a rapid
convergence method that can quickly reconstruct the sparse
distribution of the fluorescent sources.

Gu et al.8 have proposed a reconstruction method using
adaptive meshing for use with two-dimensional (2-D) diffuse
optical tomography, and the results obtained for phantom
measurements demonstrate both qualitative and quantitative
optical image reconstruction improvement. In addition, fully
adaptive finite-element-based reconstruction algorithms have
recently been reported, which have been applied to human breast
geometry reconstruction using point-source illumination.9–11

However, these proposed algorithms have been applied to specific
geometries only, such as cylinders and hemispheres. Furthermore,
well-documented finite-element-method (FEM) reconstruction
software packages such as NIR frequency-domain optical absorp-
tion and scatter tomography (NIRFAST) and time-resolved
optical absorption and scattering tomography, which provide
FEM solutions based on L2 regularization to accommodate the
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complex geometry of small animals, have been made available.12

However, such software is not well suited to fan-beam FMT
imaging methods, which are designed to localize sparse fluo-
rescent source distribution in the targeted tissues. Therefore,
sparsity-promoting methods designed to solve this problem
have emerged.13,14

In order to promote sparsity and to preserve edge informa-
tion, L1-norm-based methods have been studied recently. For
example, Dutta et al.15 have proposed a combination of L1
and total variation (TV) norm penalties to constrain the FMT
inverse problem. They have suggested a compound approach
that uses a combination of the separable paraboloidal surrogates
(SPSs) method with the preconditioned conjugate gradient
(PCG) algorithm to minimize the joint L1 and TV penalties.
As a result of ill conditioning, the surrogate functions typically
have high curvature. This is known to correspond to a slow con-
vergence rate and, therefore, this approach is impractical for
many applications involving large-scale problems. The fast iter-
ative shrinkage thresholding algorithm (FISTA), having a rapid
convergence rate, has been investigated as regards solutions of
the sparsity-promoting regularization problem using the com-
bined L1 norm and TVapproach.16 However, FISTA is designed
for simpler regularization problems and cannot be applied effi-
ciently to composite regularization problems. In contrast, the
joint L1 and TV norm regularization problem can be efficiently
solved using the fast composite splitting algorithm (FCSA),
which transforms the L1 and TV norm regularization problem
into simpler subproblems.17 To the best of our knowledge, appli-
cation of the FCSA to magnetic resonance imaging (MRI) has
been widely explored, but it has not been investigated with
regard to optical imaging. In this paper, a newly developed
multislice (MS) 360 deg free-space FMT imaging method is
presented, which incorporates structural information into the
reconstruction algorithm based on a suitable sparsity-promoting
regularization problem.

The paper is organized as follows. In Sec. 2, the experimental
optical setup and TV-L1 regularization are described for the
FMT imaging system. Then, numerical and in vivo experimental
results obtained using the proposed methods are presented in
Sec. 3. Finally, in Sec. 4, the findings are discussed and conclu-
sions are presented.

2 Methods

2.1 Multislice-Fluorescence Molecular Tomography
System Design and Implementation

A flow chart of the proposed MS-FMT implementation, acquis-
ition, and reconstruction process is shown in Fig. 1, and the
experimental setup of the FMT system is shown schematically
in Fig. 2.18 The system includes three continuous-wave (CW)
excitation diode-pumped diode laser sources emitting at 473,
533, and 769 nm with up to 20-mW output power (B & W
TEK Inc., Newark, DE). The NIR laser-beam propagation axis
was aligned perpendicularly to those of the 473- and 533-nm
lasers. The beams, after reflection from the dichroic mirrors,
spatially overlapped and were directed to a mirror oriented at
45 deg. The mirror reflected the resultant laser beam, which
passed through a motorized variable attenuator with an optical
density of 0.3 to 2. The attenuator was built for accurate control
of the source power to within 5 to 20 mW, depending on the
sample thickness and absorption.

The excitation light was then directed to the sample surface
via a set of mirrors and a home-made two-axis laser scanner
(Fig. 2). The scanner was mounted on a computer-controlled,
micrometer-precision XY translation stage, which moved the
laser beam across the surface of a cylindrical specimen holder.
The holder was a custom-made device designed to allow the
information necessary for image reconstruction to be obtained.
After passing through the sample, the excitation beam reached a
home-made motorized filter wheel with two series of bandpass
filters that separated the excitation wavelengths from the
emission wavelengths. The fluorescent radiation was then cap-
tured by a cooled electron-multiplying charge-coupled-device
(EMCCD) camera (Luca, Andor, UK; 1024 × 1024 pixels)
with a fixed focal length (F) lens (AC254-030B, Thorlabs;
F ¼ 30 mm).

Fig. 1 FMT method implementation flow chart.

Fig. 2 Schematic view of MS-FMT imaging system.
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The FMT hardware was controlled via an intuitive graphical
user interface, which allowed users to select the required lasers,
filters, angle of rotation, and imaging modes. In addition to the
tomography mode, reflectance measurement and white-light
imaging could also be performed by moving the scanner to
the appropriate position and activating a light-emitting diode
light source (not shown). The entire imaging system was housed
within a light, tightly sealed box constructed from aluminum
posts in a cage structure.

2.1.1 Phantom

To perform an experimental evaluation of the proposed system,
we prepared a cylindrical phantom of 2 cm in diameter.
The phantom was composed of 1 g agarose (BioGene,
Kimbolton, UK), 4 ml intralipid 20% (Fresenius SE, Bad
Homburg, Germany), and 3 μl Indian ink (Pelikan Holding,
Schindellegi, Switzerland) dissolved in 100 ml of water.19

The reduced scattering and absorption coefficients at 692 nm
were found to be μ 0

s ¼ 80 mm−1 and μa¼ 0.01 mm−1,
respectively.20 A hollow transparent tube of 1.5-mm inner diam-
eter filled with a fluorescent dye was inserted inside the phan-
tom. The phantom was then placed in the holder, which
automatically moved to the center of the camera’s field of
view (FOV). The gantry was then rotated 360 deg around the
subject in 36 steps. At each step, the laser beam was scanned
across the FOV (3 × 3 cm), and a complete dataset was gener-
ated using a laser scanner. A prereconstruction algorithm was
then applied to the dataset, which included an optical center
offset (OCO) evaluation.

The OCO problem arises frequently in FMT experiments,
where it is essential to obtain accurate 3-D reconstruction
results. In this paper, the OCO was obtained using an automated
rotational center-location method. In this method, capillary
tubes were filled with a fluorescent dye and placed horizontally
in a tube mouse holder. FMT data were then obtained to generate
a sinogram.21,22 The Fourier transform of the sinogram was
taken and multiplied by a binary mask, which returned a

value of 1 outside the double-wedge region. The constrained
Fourier coefficients of the sinogram inside a double wedge
were used to find the sinogram Fourier metric (QSF). Once
the QSF was found, a number of sinograms were created by
displacing the projections at an angle of ½π; 2π� about a horizon-
tal center (HC) determined by the number of pixels (s). The QSF
of each sinogram was calculated in order to obtain the center of
rotation (CoR), using22

EQ-TARGET;temp:intralink-;e001;326;664CoR ¼ HCoIþ so
2
; (1)

where HCoI is the HC of the image and so is the displacement at
the minimum QSF.

2.1.2 In vivo experiment

The mouse imaging experiments were approved by the
Institutional Animal Care and Use Committee of the Tehran
University of Medical Sciences. For the in vivo experiment,
the lower 10 mm of a glass capillary tube with an inner diameter
of 1 mm was filled with 400 micromoles of fluorescein
(Invitrogen Inc.) diluted in 2% intralipid. A thin layer of oil
was used to seal the top of the fluorescent solution. Then the
remaining tube was filled with 2% intralipid. The tube was
inserted into the back of a sacrificed and shaved 12-week-old
Balb\c mouse. The mouse was placed in a transparent cylindrical
holder inside the MS-FMT imaging system. The FMT image
acquisition began with the dorsal and the ventral sides of the
mouse facing the EMCCD camera and the light source, respec-
tively. The laser beam was scanned in a raster pattern across
the sample’s surface in a 30 mm × 30 mm region at the fixed
position of the camera (Fig. 3). A total of horizontally arranged
9 source positions were used for each angular position, which
were each separated by ∼7 mm. After completion of the scan,
the gantry was rotated by 10 deg before the next laser scanning
and corresponding data acquisition process were initiated. In
total, 324 FMT images were acquired by the EMCCD camera
for 36 angular positions.

Fig. 3 (a) Mouse position in transparent holder. The longitudinal axis of the mouse was aligned along the
z axis. (b) The laser beam was scanned (in the x -y plane) across the abdominal surface of the mouse.
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After optical acquisition, the holder was transferred to the
adjacent CT-scanning system so that CT data could be acquired
as structural information. This was then overlaid on the recov-
ered fluorescence data.

2.1.3 Computed tomography imaging

For anatomical imaging, the CT images were acquired in the
form of a digital imaging and communications in medicine
stack using an x-ray CT (Emotion Duo, Siemens Medical
Systems, Erlangen, Germany) system. The CT stack consisted
of 110 axial slices of 512 × 512 pixels (0.14 mm × 0.14 mm),
with 1-mm slice thickness. The x-ray CT source was operated at
110 kV and 76 mAwith 1500-ms exposure time for each of the
110 acquired projections.

2.1.4 Fiducial point extraction

A glass capillary was glued to the tube holder to serve as a fiducial
point for mapping of the FMT images to the CT images. The
capillary coordinates in the FMT images were detected using
a preprocessing method,23 which performed three successive
steps: (1) a bandpass filter, which consisted of a Gaussian
low-pass filter and a boxcar kernel, was used to remove unwanted
noise; (2) the brightest pixels were identified through thresholding
of the image pixel intensities for a threshold value of 90% of the
maximum intensity; and (3) the location estimates were refined
through calculation of the centroid-weighted position.

2.2 Theoretical Background

2.2.1 Multislice-fluorescence molecular tomography:
forward model

The theoretical approach described herein was derived for a CW
illumination and fluorescence contrast, which pertains to FMT
applications. In FMT, the CW forward model is described by a
set of coupled diffusion equations at the excitation and emission
wavelengths, λe and λf , respectively,

24–28

EQ-TARGET;temp:intralink-;e002;63;338½−∇:κðr; λeÞ∇þ μaðr; λeÞ�Φðr; λeÞ ¼ qðr; λeÞ r ∈ Ω; (2)

EQ-TARGET;temp:intralink-;e003;63;308½−∇:κðr;λfÞ∇þ μaðr; λfÞ�Φðr; λfÞ ¼Φðr; λeÞhðr; λfÞ r ∈ Ω;
(3)

where κðr; λeÞ ¼ ½3ðμ 0
sðr; λeÞ þ μaðr; λeÞÞ�−1 is the diffusion

coefficient at position r and λe, and h is the fluorescence
yield coefficient. The fluorophore is excited with light at λe
emitted by a source qðr; λeÞ. The emission photon density
Φðr; λeÞ over the Ω domain is obtained by solving Eq. (3).

2.2.2 Multislice-fluorescence molecular tomography:
inverse problem and fast composite splitting
algorithm

The objective in solving the FMT inverse problem is to recover
the optical properties at each FEM node. The inverse problem
solution is an iterative procedure, where the experimental mea-
surements (ΦM) are matched iteratively with the modeled data
(AX). However, the fluorescent objects present in the tissue are
often quite small, indicating that the fluorophore distribution
and collected ΦM can be reasonably considered sparse.29,30

The sparsity can be enforced by imposing TV-L1 regulariza-
tion. However, the TV-L1 penalty is nonsmooth, and its

implementation generates a heavy computational load. To
overcome this problem, several splitting operator and variable
splitting algorithms have been developed to decompose the
TV-L1 into simpler subproblems. For example, the operator-
splitting algorithm searches for a zero of the sum of the maxi-
mal-monotone operators. The variable splitting algorithm is
another option for solving the TV-L1 problem, and it is
based on a combination of alternating direction methods under
an augmented Lagrangian framework.

Motivated by the strategy of combining both variable and
operator splitting techniques, this study utilizes the FCSA algo-
rithm to tackle the TV-L1 problem for sparsity-enforced FMT
reconstruction. In the FCSA-based algorithm, the complex
TV-L1 problem is decoupled into L1 norm regularization and
TV regularization subproblems, so that each subproblem has
only one nonsmooth term. The solutions to the TV-L1 problem
are obtained via a linear combination of the solutions to these
subproblems in an iterative process. The primary advantages of
the FCSA-based algorithm include (1) the complexity of the TV-
L1 problem is reduced, which is achieved using variable split-
ting techniques, and (2) the nonsmooth property of the TV and
L1 terms is overcome through use of operator splitting methods.

This algorithm decomposes the joint L1 and TV norm regu-
larization problem into simpler subproblems and solves them in
parallel, using31,32

EQ-TARGET;temp:intralink-;e004;326;477x̂ ¼ arg min
n
f1ðxÞ ¼

1

2
kAx−ΦMk22 þ αkxkTV þ βkγxk1

o
;

(4)

where A ∈ Rm×n is the system matrix (called the Jacobian or
sensitivity matrix) corresponding to the forward model, x̂ is
the true image to be estimated, γ is the wavelet transform,
and α and β are two positive parameters.

To the best of our knowledge, the FCSA solves Eq. (3) more
quickly than other available algorithms. Algorithm 1 outlines
the FCSA for the MS-FMT image reconstruction problem.

As shown above, the x1 ¼ proxρð2αkxkTVÞðxrÞ step
can be computed quickly within limited iterations with
cost OðnÞ (where n is the dimension of x). The x2 ¼
proxρð2βkγxk1ÞðxrÞ step has a closed-form solution and can be
computed with cost Oðn log ðnÞÞ. Thus, the total cost of each

Algorithm 1 Mixed-norm regularized reconstruction based on FCSA.

Input: ρ ¼ 1∕Lf; t1 ¼ 1; α; β,

Initialization: k ¼ 0; t1 ¼ 1; r 1 ¼ xo

for k ¼ 1 − K , calculate:

xg ¼ rk − ρ∇f ðrk Þ,

x1 ¼ proxρð2αkxTVÞðxgÞ,

x2 ¼ proxρð2βkγxk1ÞðxgÞ,

xk ¼ ðx1 þ x2Þ∕2,

t kþ1 ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðtkÞ2

p
∕2,

r kþ1 ¼ xkþððt k − 1Þ∕t kþ1Þðxk − xk−1Þ,

end
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FCSA iteration is Oðn log ðnÞÞ. In the algorithm, ∇fðnkrÞ ¼
ATðAxkr − xÞ, as fðrkÞ ¼ ð1∕2ÞkAxkr − xk2, which costs
Oðn log ðnÞÞ. Here, f is the continuously differential function
with Lipschitz constant Lf, where k∇fðy1Þ − ∇fðy2Þk ≤
Lfky1 − y2k. Lf was not easily computable and, therefore,
we used a backtracking step-size rule, which computes the
step size via backtracking starting from any value. The sequence
of function values fFðxkÞg produced by the FCSA is nonin-
creasing. Indeed, for every k > 1, FðX1Þ < f1ðX1ðyk−1Þ; yk−1Þ,
where Lk is chosen using the backtracking rule.

2.3 Comparison of Methods: Fast Composite
Splitting Algorithm Versus Preconditioned
Conjugate Gradient Method and Ordered
Subset Separable Paraboloidal Surrogate
Method

We compared our fast method with the PCG method and with
the ordered subset separable paraboloidal surrogate (OSSPS)
and OSSPS-PCG methods. All of these algorithms were devel-
oped to solve the joint TV-L1 regularized inverse problem
of FMT.

2.3.1 Preconditioned conjugate gradient

The PCG was implemented in order to minimize the cost
function and contains three data components: a fitting term,
a sparsifying penalty term, and a smoothing penalty term. This
method uses the gradient given as15,33

EQ-TARGET;temp:intralink-;e005;63;436gðnÞ ¼ A 0ðAx −ΦMÞ þ β1þ αC 0½ðCxÞozðCxÞ�; (5)

where C is a nn × ns matrix, with ns being the number of pixels
in x and nn being the number of neighboring pixel pairs. Each
row of C contains one “þ1” and one “−1” entry, so that Cx
corresponds to the difference between two neighboring pixel
values. In Eq. (5), the prime (′) symbol and (○) represent
the transpose of a matrix and the Hadamard matrix product,
respectively. The function zðtÞ ¼ ½κðt1Þκðt2Þ: : : κðtnnÞ� 0, and

EQ-TARGET;temp:intralink-;e006;63;326κðtÞ ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt∕δTÞ2þ

p
1
: (6)

The δT parameter was set to a fixed value of 10−9.15 The pre-
conditioned form of the Polak–Ribiere CG method was then
implemented as follows:
EQ-TARGET;temp:intralink-;e007;63;249

pðnÞ ¼ PgðnÞ; ðpreconditioned gradientÞ

γðnÞ ¼
8<
:

0; ðn ¼ 0Þ
pðnÞT fgðnÞ−gðn−1Þg

pðn−1ÞTgðn−1Þ ; ðn > 0Þ
dðnÞ ¼ −pðnÞ þ γðnÞdðn−1Þ; ðsearch directionÞ (7)

where P is a preconditioner matrix that approximates the inverse
of the diagonal terms of the Hessian of the data-fitting term.
Once the descent direction d for the cost function was calcu-
lated, a step size τ was determined using an Armijo line search.
This was in order to compute the new iteration, using32

EQ-TARGET;temp:intralink-;e008;63;103xðnþ1Þ ¼ xðnÞ þ τðnÞdðnÞ: ðupdateÞ (8)

2.3.2 Separable paraboloidal surrogates algorithm

The SPS is a fully parallelizable algorithm in which the optical
properties at all nodes (xj) are updated in parallel. To implement
the SPS approach, the nodes were separated using the additive
convexity technique, permitting 34 simultaneous updates. Using
the convexity of qni , we found33

EQ-TARGET;temp:intralink-;e009;326;679

qni ½Ax�i ¼
X
j

aijxj ¼ qni

�X
j

αij

�
aij
αij

ðxj − xnj Þ þ ½Axn�i
��

≤
X
j

αijqni

�
aij
αij

ðxj − xnj Þ þ ½Axn�i
�
; (9)

where aij denotes the change in the log of the amplitude of the
i’th measurement arising from a small change in μa at the j’th
reconstructed node. Therefore, a separable surrogate function
was obtained, which was tangent to the negative log-likelihood
and lay above it everywhere in the convex range. The surrogate
function at an iterate xn was obtained by replacing the data fit-
ting and TV terms in the original cost function, such that

EQ-TARGET;temp:intralink-;e010;326;522Φðx; xnÞ ¼ ΦDFðx; xnÞ þ λL11
0xþ λTVΦTVðx; xnÞ: (10)

Owing to the separable nature of this surrogate, we could
easily compute its minimizer, xnþ1, over the non-negative
orthant in closed form. The gradient of this surrogate function
could then be computed using the original equation, where

EQ-TARGET;temp:intralink-;e011;326;446xnþ1 ¼ ½xn −D−1ðxnÞ∇ΦðxnÞ�: (11)

Here, the notation ½�þ represents projection onto the non-neg-
ative orthant, while D is a p × p diagonal matrix with diagonal
entries DðxÞ computed using33

EQ-TARGET;temp:intralink-;e012;326;381DðxÞ ¼ diagj½kA 0Ak1 þ 2λðjCj 0zðCxÞÞj�: (12)

The SPS method was then accelerated using an OS. The OS
was implemented by grouping the rows of A into subsets.

2.3.3 Hybrid algorithm: ordered subset separable
paraboloidal surrogate-preconditioned
conjugate gradient

The OSSPS and PCG algorithms have different advantages and
disadvantages at different stages of the reconstruction. The
advantages of these algorithms were combined to create a hybrid
algorithm. The hybrid algorithm begins with OSSPS and then
switches to PCG at an appropriate point. This point was selected
by fitting the following exponential function to the objective
values:

EQ-TARGET;temp:intralink-;e013;326;198fðnÞ ¼ a � ð1 − e−ðn−1Þ�bÞ þ c: (13)

The parameters a, b, and c were estimated from

EQ-TARGET;temp:intralink-;e014;326;155min
a;b;c

XN
n¼No

½ΦðxnÞ − fðnÞ�2: (14)

The established algorithm was run for an initial n iterations
before the next algorithm was activated. The change occurred
when the algorithm objective value became greater than 98%
of (aþ c).
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2.4 Image Reconstruction Implementation

Image reconstruction in MS-FMT involves solving the forward
and inverse problems. In this paper, the forward algorithm
implementation was based on the NIRFAST software package
developed at Dartmouth University.34,35 The FCSA MATLAB
code17 was then modified to yield a solution for the FMT inverse
problem. The performance of our image reconstruction algo-
rithm was evaluated through a numerical simulation and
using in vivo mouse measurements, which are described below.

2.5 Simulation

In the numerical simulation, the mesh generation was performed
for the forward problem using the flowchart shown in Fig. 4. As
can be seen in the figure, the CT images were cropped and con-
verted to a binary mask via thresholding, and the holes within
the mask were iteratively filled using the NIRView software
package.36 The binary mask was then used to generate the volu-
metric FEM mesh. The mesh was created using NIRFAST and
NIRView, which was also used to localize the source and detec-
tor, as shown in Fig. 5. The excitation point source was located
one mean free path beneath the edge of the photon transport
beneath the surface. For each excitation source, five detectors
(CCD camera) were positioned on the opposite side of the
specimen with a 10 deg FOV. Therefore, a total of 2116

source–detector pairs were used to provide datasets for
reconstruction of the optical properties of the medium.

A cylindrical fluorescent target with 2-mm diameter and 10-
mm height was then placed at the (70, −60, 10) point (millimeter
units), near to the surface of the mesh. For simplicity, the optical
properties of the target were assumed to be homogeneous
(μa ¼ 0.01 mm−1 and μ 0

s ¼ 80 mm−1). The generated mesh
was used to solve the FMT forward problem. Forward modeling
was performed using NIRFAST, and the data obtained through
the numerical solution of the forward problem were used to
solve the inverse problem. The inverse problem was solved
using the FCSA regularization method.

2.6 Regularization Parameter Selection and
Image-Quality Metrics

The accuracy and reliability of the inverse problem solutions can
be improved by choosing an optimal regularization parameter.
In this paper, the joint L1 and TV regularization parameters
were selected using a nested leave-one-out cross-validation
(nLOOCV) method.37 The nLOOCV embedded an inner and
an outer loop. In the outer loop, the data were split into training
and validation sets. According to Eq. (4), the training set was
denoted by S ¼ fðx1;ΦM

1 Þ; : : : ; ðxi;ΦM
i Þ; : : : ; ðxn;ΦM

n Þg, in
which one xi was randomly left out as the validation set (test
set). The training and validation sets were crossed over in k

Fig. 4 Mesh creation workflow for mouse-trunk CT. (a) Sagittal slice. (b) Binary mask. (c) Filled holes.
(d) 3-D whole-body mesh. (e) Axial section. (f) Binary mask (axial view). (g) Section with filled holes.
(f) 3-D mesh generated from 10 axial CT sections only.

Journal of Biomedical Optics 026012-6 February 2016 • Vol. 21(2)

Hejazi, Sarkar, and Darezereshki: Fast multislice fluorescence molecular tomography using sparsity. . .



rounds of iteration. In each iteration, a different dataset was used
for validation, while the remaining k − 1 sets were used for
learning. The training set was then used in an internal cross-
validation (CV) and was repeatedly split into construction and
validation datasets. Construction objects were used to develop a
regression model through variation of the regularization param-
eters, whereas the validation objects were used to estimate the
model error. For each of the 100 internal CV iterations, an inter-
nal error estimate was determined for all possible regularization
parameters. Finally, the model with the lowest cross-validated
error (CV-error) in the inner loop was selected (Fig. 6).38–41

For all the inverse methods described in Sec. 2.3, the lowest
CV-error was estimated in order to determine the optimal regu-
larization parameter. The selected parameter was then evaluated
by computing the reduced scattering coefficient error (%RSCerr,
½ðμ 0

sr
− μ 0

sÞ∕μ 0
s � × 100), which is the square difference between

the real μ 0
sr
and the μ 0

s obtained from the reconstructed images.
After the optimal regularization parameter was determined, the
performance of the proposed method was compared against
that of the L2-regularization, PCG, and OSSPS techniques, in
terms of the localized full volume at half maximum (LVHM),
focality, signal-to-noise ratio (SNR), projection error (PEr),
and the root mean square error (RMSE), which are defined
as follows:42–45

EQ-TARGET;temp:intralink-;e015;326;664PEr ¼ 1

N

XN
j¼1

jxj − x0jj; (15)

EQ-TARGET;temp:intralink-;e016;326;610LVHM ¼ ð1∕6Þ detðJÞ; (16)

EQ-TARGET;temp:intralink-;e017;326;586RMSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

ðxj − x0jÞ2
vuut ; (17)

EQ-TARGET;temp:intralink-;e018;326;531SNR ¼ 10 log10
VarðxoÞ

MSEðx − xoÞ
: (18)

The LVHM is defined as the four-node tetrahedron volume
enclosing the node with the maximum reconstructed fluorescent
intensity, along with other adjacent nodes having values above
half the maximum. The volume of the corresponding element
was calculated from the determinants of the Jacobian matrices
J of the corner-node coordinates. Further, the focality is the ratio
of the LVHM to the FVHM, where FVHM is defined as the total
(sum) volume of all nodes having values above half the maxi-
mum reconstructed value. While a focality of one indicates a

Fig. 5 Mesh used for simulated data acquisition: radius: 21 mm;
height: 12 mm; nodes: 25514; and elements: 141119. The circles
and crosses represent source and detector positions, respectively.

Fig. 6 Double cross-validation scheme. In the inner loop, the model parameters and variables are esti-
mated based on an LOOCV method. The model performance for the optimized parameters and selected
variables is then evaluated using the validation test set in the outer loop. The outer loop is repeated within
the LOOCV procedure.
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single recovered fluorescent target, a focality value greater than
0.5 describes a reconstructed activation that is well separated
from the background artifacts. The SNR is the ratio of the refer-
ence fluorescent intensity variance and the mean squared error
of the reference (x0) and reconstructed (x) intensities. Finally,
the RMSE measures the square root of the difference between
xj and x0j. In Eq. (17), N represents the total number of nodes in
the LVHM.

3 Results
The aim of our study was to realize and evaluate fast MS-FMT
using sparsity-inducing regularization. The proposed regulari-
zation method was evaluated using both simulated and
experimental data. As regards the experimental data collection,
the imaging system performance was evaluated in terms of the
spatial resolution and OCO.

3.1 Imaging System Performance Evaluation

The developed MS-FMT system was used for full angular data
collection in the MS tomography mode. Therefore, the OCO of
the developed FMT imaging system was evaluated by obtaining
a sinogram, as described in Sec. 2.1.1. The generated sinogram
is shown in Fig. 7.

The QSF was changed from 1.19 to 1.26, exhibiting a mini-
mum at the correct alignment. The minimum QSF indicated that
the average coarse center deviated from the true rotational center
by 0.1 mm.

3.2 Finite-Element-Method Implementation

3.2.1 Simulation results

We used simulation data to validate the joint L1þ TV regulari-
zation strategy for the MS-FMT and compared the results with
those of the L2-regularization process. The latter is one of the
most popular methods for solution of discrete ill-posed prob-
lems. To compare the algorithms, a fluorescent capillary tube
inside a mouse mesh was simulated. (Mesh generation is
described in detail in Sec. 2.5).

3.2.2 Regularization parameter selection

The optimal values of the regularization parameters were
computed using the double CV method, which involved two
nested inner and outer loops. The outer loop assessed the
final model performance, while the inner loop was used to opti-
mize the model complexity for fixed regularization parameters.
Reconstructed images based on optical properties obtained from
the simulated data using the FCSA method are shown in Fig. 8
for a wide range of TV and L1 regularization parameters.

These images were reconstructed using FCSA regularization
with TV and L1 regularization parameters in the 10−5 to 500
range. Figure 8(a) shows the best possible reconstruction result,
which corresponds to the regularization parameters with the
lowest CV prediction error and RSCerr. The values of the regu-
larization parameters and the corresponding CV-error and
RSCerr values for the methods described in Sec. 2.6 are tabu-
lated in Table 1.

Fig. 7 OCO evaluation. (a) FMT image of four glass tubes filled with fluorescent. (b) Full revolution sino-
gram. (c) Sinogram of tubes with s ¼ 20. (d) 2-D Fourier space of equal-angle fan-beam sinogram for
s ¼ 0. (e) Fourier transform of the sinogram obtained with s ¼ 20.
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Table 1 shows that more accurate quantitative reconstruction
of the μ 0

s terms can be achieved by selecting the optimal regu-
larization parameters with the lowest CV-error values. The iter-
ative algorithms were implemented in MATLAB® code using
the simulated data with a 5% noise level,45 so as to compare
the computation costs of the different reconstruction methods.
This evaluation was performed by computing the variation of
the error projection in response to increased iteration numbers
(Fig. 9).

Figure 9 shows the variation of the PErs as a function of iter-
ation number, with the green, black, blue, and red lines repre-
senting the OSSPS, PCG, OSSPS-PCG, and FCSA methods,
respectively. It is apparent that the FCSA exhibited a smaller
PEr than the OSSPS-PCG for the same number of iterations,
and the OSSPS-PCG PEr was smaller than that of the PCG
and OSSPS techniques. This proves that the FCSA has a faster
convergence speed than the PCG and OSSPS methods.

For further quantitative evaluation, we computed the central
processing unit (CPU) time, SNR, and RMSE of the FCSA,
PCG, OSSPS, and OSSPS-PCG methods (Fig. 10).

In Fig. 10, the total reconstruction time does not include the
FEM forward-problem computational cost. The results show

that the FCSA was three times faster than the OSSPS, PCG,
and the OSSPS-PCG methods. From Fig. 10, we concluded
that the RMSE and SNR levels of the reconstructed images
did not differ significantly. Therefore, the FCSA was superior
to the other methods in terms of both reconstruction accuracy
and computational complexity, as it achieved the same SNR
and RMSE for less CPU time. Finally, the FCSAwas compared
with the L2-regularization (Tikhonov) approach (Table 2).

From Table 2, it can be seen that the joint TV-L1 method
exhibits the lower RMSE. Note that a lower RMSE value indi-
cates that the FCSA exhibits better performance. Note that the
LVHM values of the L2-regularization and FCSA methods are

Fig. 8 Reconstructed optical properties of simulated axial section, obtained by solving the inverse prob-
lem using the FCSA method with different regularization parameter values. λTV and L1 are (a) 10−5 and
10−5; (b) 500 and 10−5; (c) 10−5 and 10−3; (d) 500 and 10−3; (e) 10−5 and 500; and 500 and 500, respec-
tively. The color bar indicates variation of the L1 and TV regularization parameters from 10−6 to 500.

Table 1 LOOCV estimations of the CV-error and RSCerr values for
the FCSA, PCG, and OSSPS algorithms for simulated datasets and
optimal λTV and L1.

Algorithm λTV∕L1 CV-error RSCerr

FCSA 1 × 10−5∕1 × 10−5 2.5 × 10−5 2%

PCG 1 × 10−1∕5 × 10−4 4.5 × 10−5 7%

OSSPS 5 × 10−5∕1 × 10−5 3.2 × 10−5 6%

Fig. 9 Normalized error projection against iteration number, compar-
ing convergence of FCSA, PCG, OSSPS, and OSSPS-PCG meth-
ods, including transition of OSSPS to PCG.
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1263 and 884 mm3, respectively. However, the FCSA-based
method can reconstruct images with significantly higher SNR
and lower RMSE in less time than the L2-regularization method.

Next, the performance of our proposed reconstruction
method was tested using experimentally obtained data.

3.3 In Vivo Results

The simulation results discussed above revealed that the FCSA
method could reconstruct the fluorescent source accurately and
had the potential to detect lesions, which is important for prac-
tical biomedical applications. To validate the feasibility of the
proposed method in practical FMT application, an in vivo
mouse experiment was conducted. The capillary tube was dis-
tinguishable in the MRI images, as can be seen in Fig. 11, where
the arrows indicate the capillary position.

Next, the axial slices (z-slices, 10 cross sections from
z ¼ 452 to 562) were used to generate a volumetric mesh

that contained 4667 nodes and 24,451 tetrahedral elements.
Recall that the goal of the inverse problem solution was to re-
cover the optical properties, an example of which is shown
in Fig. 12.

The results of the optical reconstruction conducted using the
FCSA method were quantified by computing the full width at
half maximum (FWHM) and the center position of the recon-
structed inclusion (Table 3 and Fig. 13).

Figure 13(b) shows the reconstructed 3-D FMT image
fused with a CT image, which was accomplished using the
“A Medical Imaging Data Examiner (AMIDE)” software.46

Image fusion of the two datasets was performed using the
capillary tube as a fiducial marker. The FWHM of the recon-
structed distribution was then obtained along the green-dotted
line (Table 3).

The reconstructed and the actual position center were at the
(110, 185, 460) and (110.8, 180, 460) positions, respectively.
The recovered center-position error was 1 pixel (0.05 mm)
along the x-axis and 4 pixels (0.2 mm) along the y-axis;
thus, the localization was reasonably accurate. The width of
the fluorescence profile was close to that of the actual profile,
at ∼17 pixels (1 mm). Therefore, from Fig. 13, it is clear that the
TV-L1 norm regularization solution is confined within a small
region with a clean background.

4 Discussion
CW optical imaging is a rapidly growing field of research,
particularly as regards small-animal FMT applications. This

Fig. 10 Performance metrics of FCSA, OSSPS, PCG, and OSSPS-PCG penalty functions.

Table 2 Quantitative comparison of L2 regularization (Tikhonov) and
FCSA.

Inverse
method CPU time (s) SNR (db) RMSE Focality

LVHM
(mm3)

FCSA 3.5 19.53 28.7 1 884

Tikhonov 30 17.5 32.1 1 1263

Fig. 11 Mouse x-ray CT cross-sectional scans. (a) Sagittal plane. (b) Axial plane. (c) Volumetric image.
The arrows indicate the implanted capillary.
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technique offers a rich dataset with enticing implications for the
improvement of fluorescence image reconstruction methods.
However, improvement of the hardware and software design
of FMT systems is essential to development of this medical
research field. This article describes a new MS-FMT system
and applies a combination of L1 and TV penalties to the

FMT inverse problem, so as to simultaneously encourage
both sparsity and smoothness in the final reconstructed images.

The FMT-system detection methods presented in recent stud-
ies are based on optical fiber contact measurements. However,
fiber contact measurement often introduces significant error,
which originates from imperfect delivery or light collection at
the fiber tissue interface.47 In this study, the proposed MS-
FMT system was designed to utilize a rotating gantry. With
this configuration, full noncontact excitation and detection
was achieved using an EMCCD camera. Further, in the MS-
FMT imaging system, the specimen holder was fixed (in the
z direction) during rotation of the laser beam and the CCD
camera. This design provided high measurement density by
allowing increased tissue sampling.

The developed configuration allowed a spatial resolution of
0.5 mm (the resolved gap between two capillary tubes) to be
achieved, which is three times higher than that of current
FMT implementations.18 The high resolution of our FMT sys-
tem was achieved by applying the prereconstruction algorithm,
which included OCO detection. Several studies have already
discussed methods to calculate CoR displacement from the
image center during FMT acquisition without the use of prior
calibration scans. For example, Walls et al.48 have proposed a
method that involves reconstruction of the same slice several
times with different offset values. The optimum offset value
is then chosen, either visually or using the total variance of
the reconstructed slice. Another similar proposed method
involves a combination of different parameters, such as the
center of mass and the maximum variance.49 However, for a
real dataset, the variance technique does not always identify
the CoR position correctly. Further, the center-of-mass approach
exhibits out-of-focus problems that render it unfeasible for
application to FMT. Another proposed solution is to use the
sample edge features; however, such features are often unavail-
able in FMT samples.20,50

The OCO evaluation method presented here is based on the
Fourier transform of an obtained sinogram and was recently pro-
posed by Vo et al.22 In the Fourier method, the OCO is calculated
based on the shifting of a copy of the ½−π; π� sinogram about the

Fig. 12 3-D view of FCSA-method reconstruction results. The
reconstruction of a 3-D fluorochrome distribution is shown.

Fig. 13 (a) Axial section. The bright circle (yellow arrow) inside the axial image is the cross section of the
glass capillary containing the fluorophore, which forms the fluorescent inclusion in the animal. (b) FMT
reconstruction result registered to anatomical CT images. The capillary position is marked by an arrow.
(c) Profile plots across the fluorescent target, obtained along the dotted blue line in (b). The green solid
and red dotted lines represent the reconstructed distributions obtained using FCSA regularization meth-
ods for MRI and FMTþMRI, respectively.

Table 3 FWHMs and center positions of reconstructed fluorescent
sources in Fig. 13.

Image
FWHM
(pixels)

Center position
(pixels)

Position error
(pixels)

Reconstructed 31 (x ¼ 110, y ¼ 185Þ
(Δx ¼ 1, Δy ¼ 4)Actual 17 (x ¼ 111, y ¼ 181)
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HCoI. The OCO in this study was 0.1 mm and was associated
with the rotation of the gantry in a noncircular orbit, which
was due to the unbalanced gantry weight. The gantry weight
was then uniformly distributed using commercial software.

Once performance enhancement of the imaging system
was achieved, an inverse method based on sparse regulariza-
tion was implemented. This was necessary in order to accom-
modate the sparse distribution of the fluorescent sources in
practical FMT applications. Recently, many sparsity regulari-
zation techniques for application to FMT imaging systems
have been introduced.15,43,51 For example, a recent work by
Dutta et al.15 has shown that a joint L1 and TV regularization
approach not only provides superior contrast in comparison to
standard L2 regularization but also reduces the RMSE. In
order to minimize the joint L1 and TV penalties, a combina-
tion of the OSSPS method with the PCG algorithm has been
employed. However, the surrogate functions typically have
high curvature, which is known to have a slow convergence
rate, thus rendering this approach impractical for large-scale
problems.

In this work, we used a FCSA algorithm with fast conver-
gence rate. The FCSA-type regularization can efficiently
solve a composite regularization problem including both TV
and L1 regularization terms. The strengths of the regularization
terms are controlled by the regularization parameters, and the
regularization parameter selection improves the accuracy and
reliability of the inverse problem solutions. Recently, optimiza-
tion methods that are more subjective have been introduced.
However, automatic selection of the regularization parameters
is simpler in most cases.52 To the best of our knowledge, the
nested LOOCV method is the optimal automatic strategy for
determining the regularization parameter, because of its high
robustness and stability. The results listed in Table 1 show
that more accurate quantitative reconstruction of the μ 0

s compo-
nents can be achieved by selecting the optimal regularization
parameters with the lowest CV error. After optimizing the regu-
larization parameters, the FCSA regularization algorithm for the
MS-FMT reconstruction was quantitatively evaluated by consid-
ering the RMSE, SNR, relative error, focality, and CPU time
(Table 2). The RMSE values of the OSSPS-PCG regularization
and the FCSA did not differ significantly. Further, it was deter-
mined that the FCSA scheme could yield reconstructed images
of acceptable quality within 3.5-s CPU time; this is because this
method decomposes the composite regularization problem into
multiple, simpler subproblems.

Note that, in the in vivo evaluation, the FWHM of the recon-
structed targets yielded by the FCSAwas 1.8 times greater than
the true FWHM. This overestimation of the tube area was
because a coarse reconstruction mesh was used.

In conclusion, the noncontact full 360 deg MS-FMT imaging
technique can quantify 3-D dye distributions using the FCSA
method. The proposed FCSA method exhibits optimal
reconstruction performance compared to all previous methods.
In the near future, a large mouse population study will be con-
ducted by incorporating image information directly into the
inversion matrix regularization.53
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