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Abstract. Noninvasive measurement of hemoglobin oxygen saturation (SO2) in retinal vessels is based on
spectrophotometry and spectral absorption characteristics of tissue. Retinal images at 570 and 600 nm are
simultaneously captured by dual-wavelength retinal oximetry based on fundus camera. SO2 is finally measured
after vessel segmentation, image registration, and calculation of optical density ratio of two images. However,
image noise can dramatically affect subsequent image processing and SO2 calculation accuracy. The afore-
mentioned problem remains to be addressed. The purpose of this study was to improve image quality and
SO2 calculation accuracy by noise analysis and denoising algorithm for dual-wavelength images. First,
noise parameters were estimated by mixed Poisson–Gaussian (MPG) noise model. Second, an MPG denoising
algorithm which we called variance stabilizing transform (VST) + dual-domain image denoising (DDID) was pro-
posed based on VST and improved dual-domain filter. The results show that VST + DDID is able to effectively
remove MPG noise and preserve image edge details. VST + DDID is better than VST + block-matching and
three-dimensional filtering, especially in preserving low-contrast details. The following simulation and analysis
indicate that MPG noise in the retinal images can lead to erroneously low measurement for SO2, and the
denoised images can provide more accurate grayscale values for retinal oximetry. © The Authors. Published by
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1 Introduction
The SO2 in retinal vessels can provide doctors with important
clinical information about the metabolic state of the retina.1 For
example, assessment of SO2 in the optic nerve head may help
with early diagnosis of glaucoma and is crucial for timely effec-
tive treatment.2 Monitoring SO2 changes in the retina could
evaluate relationships between oxygen consumption, blood
sugar levels, and vascular function in diabetic retinopathy.3

Therefore, it is important to obtain retinal oxygen saturation,
which could be used to monitor retinal disorders and improve
the efficiency and accuracy of diagnosis.

Among numerous SO2 measurement techniques in retinal
vessels, dual-wavelength retinal oximetry based on fundus cam-
era has been proven effective.4 It is based on the different optical
properties of oxygenated hemoglobin (HbO2) and hemoglobin
(Hb). Several versions of the oximeters, which are based on the
same principle, have been reviewed in literature.5 The system
simultaneously collects images at two wavelengths: one is sen-
sitive to changes of HbO2 in the blood and the other is an iso-
sbestic wavelength for HbO2 and Hb. The SO2 values in the
retinal vessels are finally measured after vessel segmentation,
image registration, and calculation of the optical density ratio

of two images. Figure 1 shows two retinal images of human
eye with 45-deg view field acquired simultaneously at 570
and 600 nm. The 570-nm image, which is insensitive to
HbO2 change, has a higher contrast between the blood vessels
and the background than does the image at 600 nm.

However, the aforementioned measurement method may
lead to dramatic misinterpretations of the measured data.6

They are caused by many factors such as image noise, the im-
aging errors of the detection system, vessel reflex, fundus pig-
mentation extinction, and so on. In particular, noise can affect
the subsequent feature extraction and calculation accuracy of
SO2. Thamm et al.6 proposed a data processing method for
the improvement of the primary information leading to a reduc-
tion of the uncertainties of the derived SO2. The approach may
be the most accurate one because they took vessel reflex, imag-
ing errors of the detection system, and the noise of the signal
into account and developed a sophisticated model to simultane-
ously measure over a broad wavelength range using a spectrom-
eter. But the major shortcoming is the limitation on
measurements at a small region on the fundus including a retinal
vessel and its surroundings. They could not give a complete,
two-dimensional (2D) mapping of the SO2 in the retinal vascular
tree, which is needed for clinical diagnostics. Hammer and
Schweitzer7 used polarized light to enhance the reflection signal
and improve the accuracy of oximetry. Actually, differences in
choroidal pigmentation influence the measurement of SO2 and
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should be taken into account. Beach et al.8 have modified the
calculation formula for SO2 to reduce the influence of choroidal
pigmentation and have significantly reduced variation in the
arterial SO2 measurements among subjects. In order to increase
the measurement accuracy of SO2, Smith9 developed a series of
oximetric equations that explicitly consider the effects of multi-
ple light paths, including the effects of backscattering by red
blood cells and lateral diffusion of light in the ocular fundus.
Hammer et al.10 also took the influence of vessel diameter as
well as fundus pigmentation on the SO2 into account and com-
pensated for that by introducing linear compensation terms into
the oximetry equation. Recently, Hardarson and Jonsson11 stud-
ied whether and how image quality affects measurements of SO2

in retinal vessels. They employed a newly developed software
tool to automatically grade the images on a scale of 0 to 1
according to the quality of the images. The quality grade was
composed of the assessment of focus and contrast. They con-
cluded that the poor image quality could lead to lower measured
venous SO2 and could also affect measurements of arteries in
more extreme cases. But they did not fully analyze the reasons
for the decrease of image quality, nor did they address the noise
problem of spectrophotometric images. It is necessary and
important to study a denoising algorithm for the dual-wave-
length images, since the image noise can affect the subsequent
image processing and lead to substantial uncertainties in the cal-
culated SO2.

In this study, we proposed a hybrid denoising method for
dual-wavelength retinal images. First, noise model and param-
eter estimation were based on a mixed Poisson–Gaussian

(MPG) noise model, then an MPG denoising algorithm was pro-
posed based on variance stabilizing transform (VST) and
improved dual-domain filter, which was called VST + dual-
domain image denoising (DDID). The experimental results and
quantitative analysis show that the proposed algorithm could
more effectively remove the noise while preserving image
details. The following simulation and analysis indicate that
MPG noise in the retinal images could lead to erroneously low
measured SO2 values. The denoised images could provide more
accurate grayscale values for retinal oximetry.

This paper is organized as follows. Section 2 introduces the
spectrophotometric retinal image. Section 3 describes the pro-
posed denoising algorithm (VST + DDID). Section 4 presents
the corresponding denoised results and evaluates the VST +
DDID algorithm from two aspects, including image quality
and the effect of noise on SO2 calculation. Finally, conclusions
are drawn in Sec. 5.

2 Spectrophotometric Retinal Image
The dual-wavelength image acquisition system developed by
our lab consists of a commercial fundus camera, relay imaging
optics (L1 and L2/L3), a beam splitter, two interference filters,
and CCD cameras. The retinal image at the exit pupil of the
fundus camera is relayed and separated by the beam splitter
into two optical paths and simultaneously reimaged on each
CCD camera at the wavelengths of 570 and 600 nm through
narrow bandpass (bandwidth 10 nm) interference filters. The
optical path of the dual-wavelength retinal image acquisition
system can be seen in Fig. 2(a). The outputs of the CCDs

Fig. 1 Dual-wavelength fundus images: (a) retinal image at 570 nm and (b) retinal image at 600 nm.

Fig. 2 (a) Schematic of the dual-wavelength retinal image acquisition subsystem. (b) Picture of dual-
wavelength retinal image acquisition subsystem.
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are sent to a computer where the dual-wavelength images are
stored. The images are postprocessed by SO2 computation soft-
ware in the computer, and SO2 values are finally obtained after
vessel segmentation, image registration, and calculation of opti-
cal density ratio of the two images. Figure 2(b) is a picture of the
dual-wavelength retinal image acquisition system.

From the schematic of the dual-wavelength retinal imaging
system, there exists a relatively large loss of light energy
because the output retinal image of the fundus camera is sepa-
rated by a 5∶5 beam splitter (50% transmission and 50% reflec-
tion) into two parts. Meanwhile, considering safety for the
human eye, the maximum permissible exposure must be limited.
All these factors make the dual-wavelength retinal images be
captured under the condition of weak light. Dual-wavelength
low-light retinal images are inevitably degraded by photon ran-
dom noise, which shows graininess in the CCD image and fol-
lows Poisson noise distribution.12 Due to cost considerations,
industrial scan cameras are used; these cameras are plagued
by readout noise which further degrades retinal image quality.
In our retinal oximetry, the readout noise of CCD satisfies addi-
tive Gaussian distribution as determined by a camera perfor-
mance evaluation. Because the calculation of SO2 is based
on retinal image grayscale values, the MPG noise may dramati-
cally affect subsequent image processing and lead to serious
measurement error for SO2. A hybrid denoising method is devel-
oped for dual-wavelength retinal images denoising.

3 Hybrid Denoising Algorithm
Although denoising algorithms designed for MPG noise have
been proposed (e.g., Refs. 13–16), the removal of MPG
noise is often performed by employing a VST such as the
Anscombe transform.17 By VST, the MPG noise can be stabi-
lized to an additive Gaussian noise. VST provides a simple but
effective way to remove MPG noise. The denoising algorithm
can be executed by four steps: (1) MPG noise model estimation,
(2) apply VST to standardize the image noise, (3) denoise the
image with an additive white Gaussian noise (AWGN) filter, and
(4) return the image to its original range via inverse
transformation.

In this paper, DDID is used in step 3, which was proposed by
Knaus and Zwicker.18 DDID is a new class of image denoising
methods which produce high-quality results and has been
proven to be highly competitive for natural and grayscale
images with state-of-the-art algorithms such as nonlocal
bayes (NL-bayes)19 and block-matching and three-dimensional
filtering (BM3D).20 It is surprisingly simple to implement and
has been successfully employed in applications such as syn-
thetic aperture radar image21 and 3D video denoising.22

Several works such as nonlocal dual denoising23 and data adap-
tive dual-domain denoising24 have been proposed to improve the
DDID. The proposed algorithm utilizes the advantages of both
VST and DDID and is expected to remove MPG noise and con-
tribute to a better preservation of details and edges in the dual-
wavelength retinal images. To our knowledge, such studies in
hybridization of VST and DDID for MPG noise reduction in
digital image have not yet been reported.

3.1 Mixed Poisson–Gaussian Noise Model
Estimation

The MPG noise model for dual-wavelength retinal images is
described as

EQ-TARGET;temp:intralink-;e001;326;752y ¼ xþ nPðxÞ þ nG; (1)

where x and y are the original and noised signals, respectively.
nP is the signal-dependent Poisson noise component satisfying

EQ-TARGET;temp:intralink-;e002;326;708

1

a
½xþ npðxÞ� ∼ P

�
1

a
x

�
; (2)

where a > 0 is the parameter related to the noise level of the
Poisson component. According to the elementary properties
of the Poisson distribution, we can obtain the mean and variance
of npðxÞ.15 It follows that EfnpðxÞg ¼ 0 and varfnpðxÞg ¼ ax.
nG is the additive zero-mean Gaussian noise component, for
which b is the signal-independent variance. Thus, the total
noise variance can be derived as15

EQ-TARGET;temp:intralink-;e003;326;587σ2ðxÞ ¼ axþ b: (3)

The parameters a and b for the MPG model can be estimated
from the homogeneous regions in the observed image.15 At first,
the image is transformed to the wavelet domain and then seg-
mented into nonoverlapping level sets, where each level set
stands for a homogeneous region. The signal and noise compo-
nents are approximately extracted in each homogeneous region.
Then the mean value of signal xi and the variance of noise σ2ðxiÞ
in each region are estimated. Finally, a curve fitting method
is used to estimate the parameters a and b. Following the
method proposed in Ref. 15, wavelet transform is used for
signal and noise extraction. The 2D discrete wavelet transform
(2D-DWT) generates the approximation coefficient matrix WA
and three detail coefficient matrices WH, WV, and WD for hori-
zontal, vertical, and diagonal directions, respectively. For a
homogeneous region, WA is considered as the coefficients of
the signal component, while WD is regarded as the coefficients
of the noise component. The whole estimation procedure can
be summarized as Algorithm 1. For dual-wavelength retinal
images, a and b are independently estimated for each image.

3.2 Dual-Domain Image Denoising

DDID is originally designed for AWGN. Its aim is to estimate the
original image x from a noise-contaminated image y ¼ xþ η
with a stationary variance σ2 ¼ Var½η�. DDID splits the image
into two layers and denoises them separately, then they are

Algorithm 1 MPG noise model estimation.

Input: Observed image I.

Output: Estimated parameters â and b̂ of MPG noise model.

1 Perform 2D-DWT on the observed image I.

2 Remove the pixels with large gradient in WA domain so that the
smooth regions remain.

3 Segment the smooth region into N level sets S1; S2; : : : ; SN , where
each level set Sj stands for a homogeneous region.

4 For each homogeneous region Sj , estimate x̃ j from WA and
estimate σ̃j ðx j Þ from WD.

5 Estimate a and b by curve fitting method according to Eq. (3).
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handled with a spatial method (bilateral filter) and a frequency-
domain method [short-time Fourier transform (STFT)], respec-
tively. The original image can be approximated as the sum of
the two denoised layers:18

EQ-TARGET;temp:intralink-;e004;63;540x̃ ¼ s̃þ S̃; (4)

where s̃ and S̃ are the denoised high-contrast and low-contrast
images. A bilateral filter is used in high-contrast image denoising,
STFT is used in the low-contrast image denoising, and the bilat-
eral filter protects large amplitudes of the signal, while wavelet
shrinkage discards small amplitudes. Therefore, all amplitudes
from large to small can be denoised by iterating. Figure 3
describes the block diagram of DDID. Starting with the noisy
input y, the denoised result of an iteration is used to guide the
subsequent iteration. It is worth mentioning that the noise
image is used as the guide image in the first iteration. A more
complete introduction for DDID is available in Knaus’s paper.18

The main drawback for DDID is that it produces typical fre-
quency-domain artifacts, since the method itself was developed
to avoid the artifacts of frequency-based methods.23 The reason
is that the guide image used in the first iteration is noisy, and the
kernel in the bilateral filter is computed from it; “parasite” infor-
mation is retained and propagated in the following iterations.
Therefore, it is necessary to improve DDID in order to reduce
the artifacts. In our study, we employed NL-bayes denoising
algorithm to provide a clean guide for DDID.

3.3 Variance Stabilizing Transform and Anscombe
Transform

Once the parameters a and b in the MPG noise model are esti-
mated, it is expected that a constant noise variance for every
pixel is obtained by VST. One of the most popular VSTs is
the generalized Anscombe transformation:25

EQ-TARGET;temp:intralink-;e005;63;202fðxÞ ¼
8<
:

2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axþ 3

8
a2 þ b

q
; x > − 3

8
a − b

a

0; x ≤ − 3
8
a − b

a

: (5)

Applying Eq. (5) to MPG distributed data gives a signal whose
noise is asymptotically additive standard normal. The original

noise variance is stabilized to a unity. Now, the noise can be
seen as AWGN with mean 0 and constant variance. Thus, the
denoising methods based on the AWGN model can be applied,
including DDID. The improved DDID was applied to the trans-
formed image. The final denoised image can be obtained by
inverse VST [f−1VSTðxÞ]. The whole procedure of our proposed
method for MPG noise removal can be seen in Fig. 4.

4 Results and Evaluation

4.1 Parameter Estimation Results for
Dual-Wavelength Retinal Images

First, the parameters a and b in the MPG noise model are esti-
mated for the dual-wavelength retinal images. Figure 5 shows
the parameter estimation results for Fig. 1, in which the esti-
mated sample points fx̃i; σ̃iðxiÞg are fitted into a line determined
by the parameters a and b via maximum-likelihood curve fitting
method.

According to Fig. 5, a is 10 times greater than b in each
image, thus we can conclude that the influence of Poisson
noise on retinal image is dramatically greater than Gaussian
noise. We can also see that parameters a and b may vary at dif-
ferent wavelengths. This is because various wavelengths always
cause different photon noises.26

4.2 Denoising Results for Dual-Wavelength Images

To evaluate the proposed scheme, we applied two approaches to
dual-wavelength retinal images: VST + DDID (the version of
our proposed algorithm) and VST + BM3D.25 The two denoised
results for Fig. 1 can be seen in Figs. 6 and 7, respectively.

4.3 Evaluation

The proposed denoising algorithm is evaluated in two aspects,
including image quality evaluation and evaluation of the effect
of noise on calculation of SO2.

4.3.1 Image quality evaluation

In order to evaluate the denoising algorithm, the power spectra in
Figs. 1, 6, and 7 are calculated. The corresponding horizontal

Fig. 3 The block diagram for DDID.

Fig. 4 The block diagram of the proposed method (VST + DDID).

Journal of Biomedical Optics 016004-4 January 2017 • Vol. 22(1)

Xian et al.: Dual-wavelength retinal images denoising algorithm for improving the accuracy of oxygen saturation calculation



cross section of the power spectrum can be seen in Figs. 8(a)–8(f).
The power spectra of images in Fig. 1 (original retinal images) are
compared with the power spectra in Figs. 6 (VST + DDID) and 7
(VST + BM3D). It can be seen that at high frequencies, which
probably correspond to noise, the power spectra of Figs. 8(c)–8(f)
are decreased. The power spectra indicate that both VST + DDID

and VST + BM3D can remove the Poisson noise and enhance the
image contrast.

It is worth noting that there is edge blurring at low-contrast
details in Fig. 7 (VST + BM3D) and no edge blurring in Fig. 6
(VST + DDID), as can be directly seen in the four amplified
rectangular areas. Both VST + DDID and VST + BM3D can
reduce noise and preserve features like edges; however, VST
+ BM3D has difficulty in preserving low-contrast details. In
this aspect, VST + DDID is better than VST + BM3D,
which is a state-of-the-art MPG denoising algorithm.

4.3.2 Effect of noise on calculation of SO2

The focus of our study is on the impact of MPG noise on the
calculation of SO2. We assume that the results of blood vessel
segmentation and image registration are perfect and have no
effect on SO2. In order to objectively evaluate the influence,
we first simulate artificial retinal images at 570 and 600 nm,
with known blood vessel position, gray information, by
which the SO2 can be directly obtained. The original artificial
retinal image with a size of 512 × 512 pixels and in a gray scale
ranging from 0 to 255 can be seen in Fig. 9(a). Two veins and
two arteries are the observable vessels (as large as 16 pixels in
diameter) in the horizontal and vertical directions, respectively.
The gray values in the radial direction of vessels are subjected to
Gaussian distribution with a mean of 8.5 and variance of 8. The
gray values in the axial direction of vessels are set to meet incre-
ment for SO2. Here, the axial direction is the direction of blood

Fig. 6 (a) Denoising result by VST + DDID for Fig. 1(a). (b) Denoising result by VST + DDID for Fig. 1(b).

Fig. 7 (a) Denoising result by VST + BM3D for Fig. 1(a). (b) Denoising result by VST + BM3D for
Fig. 1(b).

Fig. 5 (a) Parameter estimation for Fig. 1(a). (b) Parameter estimation
for Fig. 1(b).
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flow in a blood vessel, and the radial direction is substantially
orthogonal to blood flow. TheMPG noise with estimated param-
eters a and b was added in the original artificial retinal images,
as shown in Fig. 9(b). We can see that the images contaminated
by MPG noise have graininess which leads to detail loss and
contrast reduction. The proposed algorithm was used for the
artificial images contaminated with MPG noise. Figure 9(c) dis-
plays the denoised artificial images. The corresponding pseudo-
color SO2 maps are shown in Fig. 10. Colors indicate SO2 in
retinal vessels (scale to the right of the image). Veins can
vary from blue to yellow but normally are light green, indicating
SO2 approximately 50% to 60%. Arteries generally are orange
to red, indicating SO2 approximately 80% to 100%.

Caused by MPG noise, SO2 values in both veins and arteries
gravely deviate from the true values and are even smaller than

the true values, as can be seen in Fig. 11. SO2 values in the
denoised images are much closer to the true SO2 values. In addi-
tion, we employed mean square error (MSE) to further evaluate
the results, as can be seen in Table 1:

EQ-TARGET;temp:intralink-;e006;326;184MSE ¼ 1

N

XN
i¼1

½SoriginalðiÞ − SmeasuredðiÞ�2; (6)

where Soriginal represents SO2 values in the original image, and
Smeasured represents SO2 values in the noisy image or denoised
image. N is the arterious or venous section numbers.

MSE1 is the MSE of SO2 between the original image and
noisy image, while MSE2 is the MSE of SO2 between the
original image and denoised image. We can find that MSE2

Fig. 8 (a) Horizontal cross section of the power spectrum of original retinal image at 570 nm; (b) hori-
zontal cross section of the power spectrum of original retinal image at 600 nm; (c) horizontal cross section
of the power spectrum of retinal image at 570 nm denoised by VST + DDID; (d) horizontal cross section of
the power spectrum of retinal image at 600 nm denoised by VST + DDID; (e) horizontal cross section of
the power spectrum of retinal image at 570 nm denoised by VST + BM3D; and (f) horizontal cross section
of the power spectrum of retinal image at 600 nm denoised by VST + BM3D.
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is significantly smaller thanMSE1 in both artery and vein. From
the above, we can conclude that compared with SO2 in artificial
images corrupted by MPG noise, the proposed denoising algo-
rithm can significantly improve the accuracy of SO2.

We give two pseudo-color fundus SO2 maps generated auto-
matically by our SO2 calculation software, as shown in Fig. 12.

Fig. 9 (a) The artificial retinal vessel images, (b) corresponding
images contaminated by MPG noise, and (c) denoised images by
the proposed method at 570 and 600 nm, respectively.

Fig. 10 Pseudo-color SO2 map (a) for the original artificial images, (b) for the images contaminated with
MPG, and (c) for the images denoised by the proposed method, respectively.

Fig. 11 (a) The SO2 values in all venous sections for Figs. 10(a)–
10(c). (b) The SO2 values for all arterial sections for Figs. 10(a)–
10(c).

Table 1 MSEs of SO2 for Figs. 10(a)/10(b) and 10(a)/10(c).

Artery Vein

MSE1 0.0455 0.0074

MSE2 0.0010 1.2918 × 10−4
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They correspond to the original retinal images (Fig. 1) and the
retinal images denoised by VST + DDID (Fig. 6), respectively.
Colors indicate SO2 in retinal vessels (scale to the right of the
image). Based on the above analysis, the values of SO2 are more
accurate after denoising the dual-wavelength retinal images.

A study in healthy volunteers, including 10 [6 males, 4
females, mean age: 22.9 years, standard deviation (SD): 1.7
years] subjects, was performed for evaluating the effect of
noise on the reproducibility of the retinal oximetry. All proce-
dures were in accordance with the tenets of the Declaration of
Helsinki. Before their participation, signed informed consent
was obtained from the subjects. Five fundus images of each sub-
ject were recorded. For each of the five images, two different
radii of circles centered on optic disc center were created in
order to reduce the influence of optic disc on the calculated
SO2. The SO2 was determined for corresponding arterial and
venous sections in the annular areas. The annular area for
blood oxygenation analysis can be determined manually, and

our SO2 calculation software can automatically calculate the
SO2 values for each of the arterial and venous sections. In
order to facilitate the observation of the results, average SO2

values for one arterial and one venous section in the annular
areas are shown in Fig. 12. Table 2 shows the mean and SD
of the five repeated measurements of the same vessel section.
Table 3 shows the mean and SD of the five repeated measure-
ments of the same vessel section after denoising. According to
Tables 2 and 3, we can obtain a higher SO2 value using the
denoised retinal images. This phenomenon agrees well with
the simulation results in Sec. 4.3.2.

For 10 individuals, one artery and one vein were measured in
each. Mean and SD were calculated respectively for each indi-
vidual (from five images) as a measure of the reproducibility.
Tables 2 and 3 show the means and ranges for these individual
means and SDs.

5 Conclusions
MPG noise exists in the dual-wavelength retinal images because
of the maximal permissible exposure and light energy loss in the
retinal oximetry. It affects further processing such as vessel seg-
mentation and SO2 calculation. Inspired by the methodology
of Refs. 15 and 18, we have proposed a hybrid method called
VST + DDID for denoising MPG noise. VST + DDID can
denoise the dual-wavelength retinal images and reduce the
error in calculated SO2 for retinal vessels. To the best of our
knowledge, this is the first time the image quality in retinal oxi-
metry has been improved through noise estimation and a spe-
cific denoising method. The experiments with synthetic
artificial images demonstrate that the proposed algorithm is
effective in improving the SO2 calculation accuracy. We also
demonstrate systematically higher saturation levels measured
from a series of 10 healthy subjects using VST + DDID.

Our work was based on well-defined assumption that only
MPG noise could affect the calculation of SO2. However,
ongoing work is required to further improve the deviation of
the calculated SO2. The deviation may be caused by nonuni-
formity of the CCD response, calibration, insufficient adjust-
ment of the rotation and the lateral deviation between the
dual-wavelength images, and so on.

Disclosures
No conflicts of interest, financial or otherwise, are declared by
the authors.

Fig. 12 Pseudo-color fundus SO2 map for the original retinal images and the retinal images denoised by
VST + DDID, respectively.

Table 2 The mean and SD of the five original images of the same
individual.

Artery Vein

Mean (%) 90.32 52.68

81.49 to 100.26 46.75 to 63.48

SD (%) 3.24 4.05

1.57 to 5.89 1.81 to 6.48

Table 3 The mean and SD of the five denoised images of the same
individual.

Artery Vein

Mean (%) 93.82 56.73

84.76 to 102.69 50.28 to 68.85

SD (%) 2.57 3.58

1.36 to 5.38 1.25 to 5.93
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