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Abstract. Photoacoustic (PA) imaging is an emerging imaging technique for many clinical applications. One of
the challenges posed by clinical translation is that imaging systems often rely on a finite-aperture transducer
rather than a full tomography system. This results in imaging artifacts arising from an underdetermined
reconstruction of the initial pressure distribution (IPD). Furthermore, clinical applications often require deep im-
aging, resulting in a low-signal-to-noise ratio for the acquired signal because of strong light attenuation in tissue.
Conventional approaches to reconstruct the IPD, such as back projection and time-reversal, do not adequately
suppress the artifacts and noise. We propose a sparsity-based optimization approach that improves the
reconstruction of IPD in PA imaging with a linear array ultrasound transducer. In simulation studies, the forward
model matrix was measured from k-Wave simulations, and the approach was applied to reconstruct simulated
point objects and the Shepp–Logan phantom. The results were compared with the conventional back projection,
time-reversal approach, frequency-domain reconstruction, and the iterative least-squares approaches. In exper-
imental studies, the forward model of our imaging system is directly measured by scanning a graphite point
source through the imaging field of view. Experimental images of graphite inclusions in tissue-mimicking
phantoms are reconstructed and compared with the back projection and iterative least-squares approaches.
Overall these results show that our proposed optimization approach can leverage the sparsity of the PA images
to improve the reconstruction of the IPD and outperform the existing popular reconstruction approaches. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.3.031015]

Keywords: photoacoustic imaging; ultrasound; computational imaging; initial pressure distribution; sparsity.

Paper 180417SSR received Jun. 30, 2018; accepted for publication Nov. 9, 2018; published online Dec. 8, 2018; corrected Aug. 13,
2019.

1 Introduction
Photoacoustic (PA) imaging is an emerging biomedical imaging
technique that combines optical contrast with ultrasound acquis-
ition and image reconstruction to achieve good resolution and
high-contrast deep tissue imaging.1–3 In PA imaging, the acous-
tic signal is generated from tissue optical absorption following
irradiation of the tissue by a short laser pulse. Then the signal is
detected by an ultrasound transducer to generate the radio-fre-
quency (RF) data. This process can be described mathematically
by an optical forward model of light transport and absorption
followed by the acoustic forward model of ultrasound wave
propagation. Therefore, the acoustic inversion and optical inver-
sion are two independent tasks needed to form a PA image.
The acoustic inversion is used to reconstruct the initial pressure
distribution (IPD) in the tissue immediately following laser
excitation, whereas the optical inversion is used to estimate
the optical fluence distribution for a given IPD.4 In the acoustic
inversion problem, which is the focus of this paper, factors
such as acoustic diffraction, spatial variance, artifacts, and
weak acoustic signal will all deteriorate the reconstructed
IPD.5,6 Artifacts in PA imaging commonly come from the finite
aperture effects of the ultrasound transducer. The finite aperture

effect will degrade the resolution and the signal-to-noise ratio
(SNR) of the reconstructed IPD image and can also introduce
side-lobe effects in the image.7 The weak PA signals are due
to the limited penetration depth of the laser light in the tissue,
which leads to poor SNR in deeper imaging regions.8–10

Currently, many research groups are investigating effective
approaches to address these issues. On the hardware side,
a high-numerical-aperture-based virtual point detector was
invented for PA tomography (PAT).11 The virtual point detector
detects over a wide acceptance angle so that the sensitivity is
higher, and the finite-aperture effect is smaller. This concept,
however, cannot be readily applied to a linear array geometry.
A synthetic aperture PA-guided ultrasound technique was intro-
duced for artifact reduction in PA imaging, where the back-
propagation is applied synthetically based on the ultrasound
pulse-echo acquisitions.12,13 This helps to reduce clutter but
does not address finite aperture or low-SNR effects. On the
software (algorithms) side, several model-based reconstruction
algorithms have been developed.4 These include model-
based mean squared error minimization14 and non-negative
optimization15 reconstruction for full-angle tomography sys-
tems, which do not address finite-aperture effects. In addition,
a model-based correction of the finite-aperture effect in PAT
was demonstrated by introducing a spatiotemporal optimal filter
to minimize the reconstruction error in the mean square error
sense, which can improve the degraded tangential resolution
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for PAT with finite-aperture unfocused transducers while main-
taining the radial resolution.16

Sparsity-based optimization is a powerful tool in solving
inverse problems for image reconstruction in many fields
with the prior knowledge that the image to be reconstructed
is sparse in a certain domain.17–19 Researchers have applied
the sparsity-based optimization in PA image reconstructions.
A sparsity-based acoustic inversion algorithm was developed
in cross-sectional multiscale PAT systems using different
types of sparsity regularizations.20 The forward model was built
based on the image grid and the measurement geometry in a PAT
system with the assumption of a lossless dispersion-free homo-
geneous acoustic medium. L1, total variation (TV), combined
TV-L1 regularizations were compared in both simulations and
experiments. A deconvolution-based PA reconstruction was
invented with sparsity regularization in a three-transducer PAT
system.21 The algorithm is a semianalytical approach, where the
sparsity regularization improves the numerical conditioning of
the system of equations and reduces the computation time of
the deconvolution-based process. A full-wave iterative image
reconstruction was developed based on TV regularization in
PAT system with acoustically inhomogeneous media.22 The for-
ward and back-projection operators in this algorithm are based
on the k-space pseudospectral method to compute numerical
solutions to PAwave equation in the time domain with a circular
ultrasound transducer geometry for data collection in the experi-
ments. This algorithm is still an analytical approach utilizing
the numerical solutions to PA wave equation to build the
forward and backward model in a circular detection geometry
instead of using a linear array ultrasound transducer. A sparsity-
based image reconstruction algorithm with compressed sensing
was developed in PAT system with both circular and linear array
detecting geometry to effectively accelerate the data acquisition.
They used a way to build the forward model where each element
of the forward model matrix stores the index of the temporal
samples of each measurement as a projection from the initial
pressure to the velocity potential measurement.23 This forward
model is also built analytically using the pressure equation
with the assumption of a universal delta pulse heating function
(i.e., the bandwidth was assumed not to be considered). A spar-
sity-based reconstruction was developed for super-resolved lim-
ited-view PA computed tomography in a scattering medium.24

The reconstructed images of a wire in the experiment were
shown to have super resolution compared with the delay- and
sum-beamforming approach with a dictionary matrix as the for-
ward model. Using an initial, imprecise dictionary, the algorithm
yielded a small cluster of points for the wire. Then the locations
of these cluster points were used to generate a superposition
of responses as a single-experimental dictionary element for
a fixed wire location, and the dictionary elements for other
wire locations were generated using appropriate delays and
amplitude scaling. This approach is semianalytical since the
theoretical pressure equation was used for the dictionary matrix
of the cluster points, and the dictionary matrices for other wire
locations were only generated with appropriate delays and
amplitude scaling instead of direct measurement.

All of these model-based PA image reconstruction algo-
rithms designed the forward model matrix from the pressure
field equations, the image grid, and the experimental setup
geometry. This was done analytically or semianalytically with
little consideration to nonidealities of PA imaging such as the
spatial variance of the impulse response, the real attenuation

effects in biological tissues in experiments, and variations in
element response. Furthermore, most of these model-based
algorithms are based on tomography systems with detectors
at multiple angles for projections, which often is not feasible
for clinical applications. Therefore, in this paper, we propose
a sparsity-based-photoacoustic image reconstruction (SPAIR)
to optimize the IPD image using the two-step iterative
shrinkage/thresholding (TwIST) algorithm25 and a linear array
transducer system (rather than tomography systems) with
direct measurement of the spatial- and element-variant
impulse response to construct the mathematical forward model
matrix.

2 Method

2.1 Mathematical Forward Model

First, we built a mathematical forward model mapping the IPD
to the measured RF data. Assuming the time delay for the acous-
tic signal from the k’th pixel in the IPD image to reach the j’th
element of the ultrasound transducer is τðk; jÞ. Then the imaging
forward model can be written as

EQ-TARGET;temp:intralink-;e001;326;518Rðt; jÞ ¼
X
k

P½t − τðk; jÞ; j; k� × fðkÞ; (1)

where fðkÞ is the initial pressure in the k’th pixel of the vectored
reconstructed IPD, Pðt; j; kÞ is the spatial- and element-variant
impulse response of the j’th transducer element from the k’th
pixel of the vectored reconstructed IPD, and Rðt; jÞ is the cor-
responding acquired RF data.

For simplicity, we can formulate Eq. (1) into a matrix multi-
plication model as R ¼ Ψf, where f is the vectored IPD to be
reconstructed, R is the vectored measured RF data, and Ψ is
the measurement matrix (forward model) mapping f to R.

By taking the spatial- and element-variant properties of the
impulse response into consideration in real cases, it might not be
reasonable to simply build the forward model matrix analyti-
cally or semianalytically based only on the pressure field
equation and the experimental geometry, as is commonly done.
Instead, we directly measured the impulse response to construct
the forward model matrix. First, we assume that the recon-
structed IPD image has N × N pixels in the fixed field of view
(FOV). Since f in Eq. (1) is the vectored IPD, we then vectorize
the IPD image into N2 × 1. We let the n’th (n ∈ ½1; N2�) point in
the vectored IPD image be the sole nonzero pixel, then we mea-
sured its impulse response (the RF data) using a linear array
transducer and vectorize it as well (suppose the RF data of the
impulse response has a size of M1 ×M2, where M1 is the total
number of samples and M2 is the element number, then the size
of the vectored impulse response is M1M2 × 1). Finally, we fill
the n’th column of the forward model matrix with this vectored
RF data of the impulse response corresponding to the n’th point
in the vectored IPD image and repeat the same process for all N2

columns. Therefore, the forward model matrix has a size of
M1M2 × N2. Figure 1 shows a subset of the forward model
matrix for simulations collected in the k-Wave toolbox.26 The
simulated IPD image has 128 × 128 pixels and each RF data
of the impulse response has a size of 500 × 128, resulting in
a forward model matrix of size 64;000 × 16;384. To save
memory, a thresholded sparse matrix representation was used
to compress the matrix into ∼7 GB.
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Figure 1(a) shows a subset of the forward model matrix for
the points with pixel numbers from 61st to 70th in the 65th
column of the IPD image and the vectored sampling number
of the RF data from 39,500 to 44,500. Figure 1(b) shows
zoom-in picture of one peak in Fig. 1(a). It corresponds to
the impulse response of the point in the 65th column and
65th row from the 84th transducer element.

2.2 Sparsity-Based Optimization

Since the size of the forward matrix is large, it is infeasible to
calculate the pseudoinverse matrix for image reconstruction.
Additionally, due to the finite-aperture effects and the weak
PA signal, the conventional backprojection or time-reversal
approaches will result in artifacts and errors. Therefore, additional
information about the IPD image is needed for more accurate
reconstruction. Here, we assume that the IPD image is sparse
when it is transformed to a certain domain as the additional infor-
mation. We expect to get a better reconstruction of the IPD image
with fewer or even no artifacts and errors in a reasonable time
period. Thus with the forward model matrix, we propose to
solve the following sparsity-based optimization problem to find
the optimized IPD image using the TwIST algorithm:

EQ-TARGET;temp:intralink-;e002;63;260f̂ ¼ argmin
f

1

2
kΨf − Rk22 þ λkϕfk1; (2)

where Ψ is the forward model matrix mapping the IPD to the
collected RF data, ϕ is the sparse operator on f; (here ϕ is chosen
to be the identity matrix or TV operator with the knowledge
that IPD is usually sparse in spatial or TV domains), and λ is
the heuristically derived regularization parameter. kΨf − Rk22 is
the fidelity term indicating how well the reconstructed IPD is
matching to the acquired RF data through Ψ. The kϕfk1 term
promotes sparsity in the ϕ domain. By adjusting λ, we can find
a good balance between data fidelity term and image sparsity.

We used a specific algorithm TwIST25 to achieve SPAIR. It
solves a class of problems in the fields of image reconstruction
and other linear inverse cases, combining a linear observation
model with a nonquadratic regularizer (TV- and wavelet-based
regularization, etc.), exactly the problem we would like to

solve in Eq. (2). It has been proven that for a variety class of
nonquadratic convex regularizers, TwIST converges to a mini-
mizer of the objective function with a fast convergence rate even
for ill-conditioned problems. The iterative process is shown in
Eqs. (3) and (4):

EQ-TARGET;temp:intralink-;e003;326;455f1 ¼ ϕλ½f0 þ ΨTðR − Ψf0Þ�; (3)

EQ-TARGET;temp:intralink-;e004;326;424ftþ1 ¼ ð1 − αÞft−1 þ ðα − βÞft þ βϕλ½ft þ ΨTðR − ΨftÞ�;
(4)

where f0 is the initial guess of the IPD image, ft is the recon-
structed IPD image at the t’th iteration, ϕλ is the sparse operator
on f depending on λ, α and β are the selected constants defined
in the TwIST paper, and the other variables have the same
definition as Eq. (2).

3 Simulations

3.1 Simulations on Point Objects

To demonstrate the effectiveness of our proposed approach, we
simulated the reconstruction of several point objects, as shown
in Fig. 2(a). The simulation was done in the k-Wave toolbox.
The simulated ultrasound transducer has 128 elements with a
pitch of 0.15 mm and a sampling frequency at 22 MHz. It has
a center frequency of 6 MHz and a bandwidth of 4.8 MHz. For
all the simulations and experiments, the ultrasound transducer is
placed horizontally on top of the object to be imaged. The size of
the reconstructed IPD image is 19.2 mm × 19.2 mm with
128 × 128 pixels. Then we used the k-Wave MATLAB toolbox
to generate the corresponding RF data as shown in Fig. 2(g)
and formulated the imaging forward model Ψ as described in
Sec. 2.1. With the RF data and the forward model matrix,
we constructed the optimization problem in Eq. (2) to recon-
struct the IPD. Here the regularization parameter λ is chosen
to be 3.55 × 10−4, and ϕ is chosen to be the identity matrix
with the assumption that this point object is sparse in spatial
domain. For comparison, we also used the conventional back
projection, time-reversal, frequency-domain, and an iterative
L2 norm minimization approach (LSQR) for IPD image

(a) (b)

Fig. 1 Structure of the modeled forward model matrix: (a) 2-D plot of subset of the forward model matrix
and (b) zoom-in picture of one peak in (a). The waveform in (b) is the impulse response of a single
transducer element to a single nonzero pixel.

Journal of Biomedical Optics 031015-3 March 2019 • Vol. 24(3)

Shang et al.: Sparsity-based photoacoustic image reconstruction with a linear array. . .



reconstruction.26,27 The reconstructed IPD images are shown in
Figs. 2(b)–2(f), respectively.

In order to quantitatively compare the reconstruction results
from SPAIR and other reconstruction approaches, we used
full-width at half-maximum (FWHM) as an indication of the
resolution of the reconstructed IPD image. Here we calculated
the FWHM of the bottom point in the image both in axial
and lateral directions as shown in the white dotted lines in
Fig. 2(a). Fig. 2(h) shows the line plots of the point in the
axial direction for all the five reconstructed IPD images
and the ground truth, respectively. According to FWHM, the
axial resolution is 0.16 mm for SPAIR, and 0.17, 0.18, 0.16,
0.16 mm for back projection, time-reversal, frequency-domain,
and LSQR approaches, respectively. Similarly, Fig. 2(i) shows
the line plots of the point in the lateral direction for all the five
reconstructed IPD images and the ground truth. By calculation,
the lateral resolution is 0.16 mm for SPAIR, and 0.62,
0.61, 0.62, and 0.47 mm for back projection, time-reversal,
frequency-domain, and LSQR approaches, respectively. The
image resolution in axial direction is already good enough
from back projection, time-reversal, frequency-domain, and

LSQR approaches, so there is not much improvement with
SPAIR. However, SPAIR improves the lateral resolution by
66% compared with other approaches. The unequal improve-
ment of the resolution in the two directions results from the
fact that the lateral resolution is blurred by the finite aperture,
whereas the axial resolution is largely unaffected by it.

We also calculated the averaged mean square error (AMSE)
defined in

EQ-TARGET;temp:intralink-;e005;326;208AMSE ¼
1
N2

PN2

i¼1 ½IðiÞ −GðiÞ�2h
1
N2

PN2

i¼1 jGðiÞj
i ; (5)

where I is the vectored reconstructed IPD, G is the vectored
ground truth, N is the pixel number of the IPD image in one
dimension, and i is the pixel number from 1 to N2.

The AMSE indicates the reconstruction accuracy compared
with the ground truth. From calculation, the AMSE for SPAIR is
1.4 × 10−5 while the AMSEs are 0.91, 0.94, 0.85, and 0.57 for
back projection, time-reversal, frequency-domain, and LSQR
approaches, respectively.

(g)

(h)

(i)

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Simulation of a six-point object: (a) ground truth of the object, (b) the reconstructed IPD image from
back projection approach, (c) the reconstructed IPD image from time-reversal approach, (d) the recon-
structed IPD image from frequency-domain approach, (e) the reconstructed IPD image from LSQR,
(f) the reconstructed IPD image from SPAIR, (g) the corresponding RF data, (h) line plots of the
white dotted lines in axial direction in (a) for all the five reconstructed IPD images and the ground
truth, and (i) line plots of the white dotted lines in lateral direction in (a) for all the five reconstructed
IPD images and the ground truth. The scale bar is 5 mm.
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3.2 Robustness to Noise

In order to test if our proposed approach is robust to noise, we
added white Gaussian noise to the RF data with different SNR
levels. Then we used back projection, time-reversal, frequency-
domain, LSQR, and SPAIR approaches for reconstruction and
calculated the AMSE for comparison.

Figure 3(a) shows the AMSE values for different RF SNR
values. Here the SNR is defined as the averaged difference
between the signal power (dB) and the noise power (dB)
from all channels of the ultrasound transducer. For each SNR
value, we simulated the corresponding noisy RF dataset and
used back projection, time-reversal, frequency-domain approach,
LSQR, and SPAIR for image reconstruction. Figures 3(b)–3(f)
show the reconstructed IPD images from the five approaches
with −2-dB noise in the RF data. Then we calculated the
corresponding AMSE values using Eq. (5). Figure 3 shows
that with the increase of the noise level (decrease of the SNR),
the AMSE from back projection, time-reversal, frequency-
domain approach, and LSQR increases significantly from
∼1 to >30 while the AMSE from SPAIR remains at a low
level below 0.3. This indicates that using SPAIR for image
reconstruction is robust to noise while the other approaches
are more sensitive.

Therefore, Secs. 3.1 and 3.2 indicate that our proposed
approach outperforms the other four reconstruction approaches
in terms of image resolution, reconstruction accuracy, and noise
robustness.

3.3 Simulations on the Shepp–Logan Phantom

Since most of the biological tissues in PA imaging have complex
structures, another k-Wave simulation was done with the
Shepp–Logan phantom [Fig. 4(a)]. The imaging parameters
and forward model matrix were unchanged. Here the regulariza-
tion parameter λ is chosen to be 1.66 × 10−4 and ϕ was chosen to
be the TV operator here because the phantom is sparse in TV
domain (i.e., its edges are sparse). Figure 4(g) shows the corre-
sponding RF data collected in the k-Wave toolbox. Figures 4(b)–
4(f) show the reconstructed IPD images from back projection,
time-reversal, frequency-domain approach, LSQR, and SPAIR,
respectively. Due to the finite aperture, the vertical edges of
the phantom cannot be reconstructed in back projection, time-
reversal, frequency-domain, and LSQR approaches while better
reconstruction is achieved with SPAIR.

In order to further compare the results, the profiles across
the white dotted line in Fig. 4(a) are plotted from all the recon-
structed IPD images and the ground truth [Fig. 4(h)]. The curve
from SPAIR matches the best with the ground truth compared
with the curves from other approaches. The mismatch part
between the curve from SPAIR and the ground truth results
from the initial guess in the TwIST algorithm. In the TwIST,
an initial guess about the reconstructed image should be given
as the starting point of the optimization. Since we used the result
from time-reversal approach as an initial guess, the severe mis-
matches part between the curve from the k-Wave iteration and
the ground truth cannot be fully corrected in the TwIST.

Fig. 3 (a) The AMSE of the IPD from the RF data with different SNRs for time reversal (blue), back
projection (red), frequency-domain approach (yellow), LSQR (purple), and SPAIR (green). The inset
shows a zoomed-in view of the proposed method. (b) The reconstructed IPD image from time-reversal
approach with −2-dB noise in the RF data, (c) the reconstructed IPD image from back projection
approach with −2-dB noise in the RF data, (d) the reconstructed IPD image from frequency-domain
approach with −2-dB noise in the RF data, (e) the reconstructed IPD image from LSQR with −2-dB
noise in the RF data, (f) the reconstructed IPD image from SPAIR with −2-dB noise in the RF data,
and (g) the corresponding noisy RF data with an SNR of −2-dB. The scale bar is 5 mm.
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To quantitatively compare the results, the AMSE of the
reconstructed IPD images was calculated compared with
the ground truth. The AMSE for SPAIR is 0.20 while it is
0.35, 0.31, 0.32, and 0.23 for back projection, time-reversal,
frequency-domain, and LSQR approaches, respectively.

To further quantitatively compare the results, SNR of the
reconstructed IPD image was calculated corresponding to the
mean IPD value in the cyan dotted rectangular region (for
the signal level calculation) and the standard deviation of the
red dotted rectangular region (for the noise level calculation;
here noise is defined as the artifacts on the background) in
Fig. 4(a). The SNR for SPAIR is 19.6 dB while it is −0.4,
7.8, 3.2, and 12.7 dB for back projection, time-reversal, fre-
quency-domain, and LSQR approaches, respectively. Therefore,
our proposed approach outperforms the other approaches in
terms of AMSE and SNR measurements.

4 Experiments

4.1 Measurement of the Experimental Impulse
Responses

As mentioned in Sec. 2, the impulse responses in PA imaging
systems are spatial- and element-variant so that they cannot be
reliably calculated analytically or semianalytically based on the

pressure field equation in PA imaging and the image geometry.
Therefore, we directly measured the impulse responses to
construct the forward model matrix in the experiment.

The experimental setup is shown in Fig. 5(a). A 0.2-mm
diameter graphite rod was immersed into water and the cross
section of it was used as point source for impulse response mea-
surements. In order to simulate the scattering properties in the
real biological tissue, 0.035 mg∕ml of titanium dioxide was
added to water as scatterers. The graphite rod was illuminated
with 7-ns laser pulses at a 10-Hz repetition rate (λ ¼ 770 nm)
from an Nd:YAG second harmonic pumped optical parametric
oscillator laser system (Phocus Mobile HE, Opotek Inc.). The
PA signal from the optically absorbing graphite was acquired
simultaneously by the 128 elements of a linear array ultrasound
transducer with a pitch size of 0.3 mm (L11-4V, Verasonics)
connected to a Verasonics vantage 256 ultrasound imaging sys-
tem sampling at 22.7 MHz. A 2-D stepper motor was used to
move the graphite rod in lateral and axial directions with respect
to the ultrasound transducer to measure the impulse response of
the point at different locations in the FOV. Ten acquisitions were
averaged at each spatial location.

Collecting the RF dataset of the impulse response for each
point requires ∼10 s; therefore, for 128 × 128 points, the total
acquisition time is on the order of two days. Therefore, we only

(g)

(h)

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Simulation on the Shepp–Logan phantom using an ultrasound transducer with 6-MHz center
frequency and 4.8-MHz bandwidth. (a) Ground truth of the Shepp–Logan phantom, (b) reconstructed
IPD image from back projection, (c) reconstructed IPD image from the time-reversal approach,
(d) reconstructed IPD image from the frequency-domain approach, (e) reconstructed IPD image from
the LSQR, (f) reconstructed IPD image from SPAIR, (g) the corresponding noisy RF data with an
SNR of 18 dB, and (h) line plots of the white dotted line in (a) for all the reconstructed IPD images
and the ground truth. The scale bar is 5 mm.

Journal of Biomedical Optics 031015-6 March 2019 • Vol. 24(3)

Shang et al.: Sparsity-based photoacoustic image reconstruction with a linear array. . .



collected the RF dataset of the impulse response from 64 × 64
points in the FOVand used only 64 of the ultrasound transducer
elements for RF data collection. Then we constructed the
forward model matrix from the measured RF data. Figure 5(b)
shows a subset of the experimental forward model matrix for
the points in the 17th row with the vectored sampling number
from 10,000 to 15,000. Figure 5(c) shows the zoom-in picture of
one peak in Fig. 5(b).

4.2 Experiments on Tissue-Mimicking Phantoms

Finally, an experiment was conducted to verify if our proposed
approach could be applied to a real imaging system while still
outperforming other conventional reconstruction approaches.
Since the RF data from the experiment has noise and back pro-
jection performs better than time-reversal, frequency-domain
approaches in the simulation with the noisy RF data from
Fig. 3(a), only the back projection (noniterative approach)
and LSQR (iterative approach) were used to compare with
SPAIR. In the experiment, a gelatin phantom containing two
0.2-mm graphite rods was prepared.28 In order to generate
the same scattering effect as the impulse response measurement
experiment, 7 mg of titanium dioxide was completely dissolved
in the phantom for a concentration of 0.035 mg∕ml.

The phantom is shown in Fig. 6(a)–6(c) for front, top, and
side views, respectively. Multiple imaging planes were acquired

by moving the transducer with a 2-D stepper motor in the direc-
tion of the arrow in Fig. 6(b). Then we used the measured for-
ward model matrix and the TwIST algorithm for IPD image
reconstruction. Here the regularization parameter λ is chosen
to be 1.11 × 10−3. Figure 6(d) and (i) show two frames of
the 10 averaged RF acquisitions of the phantom at two different
scanning locations. Figures 6(e)–6(h), 6(j)–6(m) show the
reconstruction results from the back projection, LSQR,
SPAIR with TV regularization, and SPAIR with L1 regulariza-
tion, respectively at the two scanning locations. It is apparent
that some artifacts and background noise in the reconstructed
images have been eliminated by both SPAIR with TV and L1

regularizations.
To quantitatively compare the results, the SNR was calcu-

lated with the peak signal level to be 1 (normalized images)
and the standard deviation in the white dotted rectangular region
(for noise level calculation). For the first scanning location cor-
responding to Figs. 6(d)–6(h), the SNR is 43.8 and 60.9 dB for
SPAIR with TVand L1 regularizations, respectively, 30.4 dB for
the back projection, and 31.4 dB for LSQR. For the second
scanning location corresponding to Fig. 6(i)–6(m), the SNR is
55.0 dB and infinity (standard deviation of the background is 0)
for SPAIR TV and L1 regularizations, respectively, 32.0 dB
for the back projection and 32.5 dB for LSQR. Thus our pro-
posed method outperforms the back projection and LSQR in

(b) (c)

2-D stepper motor US transducer

PA laser through 
Optical fiber bundles

0.2mm pencil lead

(a)

Fig. 5 Measurement of the impulse responses in the experimental setup. (a) The experimental setup,
(b) 2-D plot of subset of the forward model matrix, and (c) zoom-in picture of one peak in (b).
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terms of the SNR measurement, artifacts, and noise reduction in
the experiment.

5 Conclusions and Discussion
In conclusion, we have proposed a sparsity-based optimization
approach using the TwIST for reconstruction of the IPD in PA
imaging with a linear array ultrasound transducer. The impulse
responses were directly measured to construct the forward
model matrix to consider the real factors such as spatial- and
element-variance of the impulse response. The simulation
results show that our proposed approach outperforms conven-
tional back projection, time-reversal, frequency-domain, and
LSQR approaches in point object and the Shepp-Logan phan-
tom reconstructions in terms of spatial resolution and SNR
improvement. A tissue-mimicking phantom with two graphite
inclusions was used for experimental verification. From the
experiment, it can be demonstrated that our proposed method
can be applied to a real imaging system and still outperforms
back projection and LSQR.

In the experiment, although the results from SPAIR with L1

regularization perform better than SPAIR with TV regulariza-
tion, the TV regularization is more versatile. In many real
cases, it is difficult to predict the features in the image. If the
features are unknown, it is better to use TV since many natural
objects are sparse in TV domain.

Although the SPAIR approach showed superior performance
in these studies, there are some trade-offs to using the method.

Currently, this approach cannot be applied to real-time applica-
tions since the postprocessing of the sparsity-based optimization
takes ∼2.5 h with the normal desktop. The main reason for the
long processing time is the large size of the forward model
matrix, even when sparse representation is used. In the future,
we will explore a more efficient way to store and extract the
elements of the forward model matrix to make the optimization
process faster. Another limitation of this approach is that every
time we change geometries or the imaging parameters, we need
to measure the impulse responses point by point. In the future,
we will explore the use of deep learning approach to predict the
impulse responses given geometries or the imaging parameters.
In addition, the nonuniform speed of sound will introduce slight
errors in terms of time of flight in the forward model. In the
future, we will explore methods to incorporate phase in the for-
ward model to deal with the errors from the nonuniform speed of
sound. Overall, we envision that the method could complement
back projection reconstruction (which can be performed in real
time) as a postprocessing step to improve the image quality.

Disclosures
The authors declare that there are no conflicts of interest related
to this article.

Acknowledgments
This work was supported by the Department of Defense
Breast Cancer Research Program Award No. W81XWH-14-

(d)

(i)

(a) (b) (c)

(e) (f) (g) (h)

(j) (k) (l) (m)

Fig. 6 Experimental results on tissue-mimicking phantoms with two graphite inclusions. (a)–(c) 3-D per-
spectives of the tissue-mimicking phantom with two graphite inclusions, (d) experimentally collected RF
data at the first scanning location in (b), (e) reconstructed IPD image from the back projection approach at
the first scanning location in (b), (f) reconstructed IPD image from the LSQR approach at the first scan-
ning location in (b), (g) reconstructed IPD image from SPAIR with TV regularization at the first scanning
location in (b), (h) reconstructed IPD image from SPAIR with L1 regularization at the first scanning loca-
tion in (b), (i) experimentally collected RF data at the second scanning location in (b), (j) reconstructed
IPD image from the back projection approach at the second scanning location in (b), (k) reconstructed
IPD image from the LSQR approach at the second scanning location in (b), (l) reconstructed IPD image
from SPAIR with TV regularization at the second scanning location in (b); and (h) reconstructed IPD
image from SPAIR with L1 regularization at the second scanning location in (b). The scale bar is 5 mm.

Journal of Biomedical Optics 031015-8 March 2019 • Vol. 24(3)

Shang et al.: Sparsity-based photoacoustic image reconstruction with a linear array. . .



1-0356 (G. L.); Department of Energy ACUMEN Program
Award No. ERKJ289 (R. A.); National Science Foundation
Division of Mathematical Sciences Award Nos. 1502640 and
1732434; Air Force Office of Scientific Research Award
No. FA9550-15-1-0152 (A. G.); and Dartmouth College Pilot
Grant (G. L. and A. G.).

References
1. M. Xu et al., “Photoacoustic imaging in biomedicine,” Rev. Sci.

Instrum. 77(4), 041101 (2006).
2. X. Wang et al., “Noninvasive laser-induced photoacoustic tomography

for structural and functional in vivo imaging of the brain,” Nat.
Biotechnol. 21(7), 803–806 (2003).

3. L. V. Wang et al., “Photoacoustic tomography: in vivo imaging from
organelles to organs,” Science 335(6075), 1458–1462 (2012).

4. A. Rosenthal et al., “Acoustic inversion in optoacoustic tomography:
a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2013).

5. S. Vilov et al., “Overcoming the acoustic diffraction limit in photo-
acoustic imaging by the localization of flowing absorbers,” Opt. Lett.
42(21), 4379–4382 (2017).

6. G. P. Luke et al., “Biomedical applications of photoacoustic imaging
with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437
(2012).

7. M. K. A. Singh et al., “Photoacoustic-guided focused ultrasound
(PAFUSion) for identifying reflection artifacts in photoacoustic imag-
ing,” Photoacoustics 3(4), 123–131 (2015).

8. S. Telenkov et al., “Signal-to-noise analysis of biomedical photoacous-
tic measurements in time and frequency domains,” Rev. Sci. Instrum.
81(12), 124901 (2010).

9. M. F. Beckmann et al., “Optimized SNR simultaneous multispectral
photoacoustic imaging with laser diodes,” Opt. Express 23(2), 1816–
1828 (2015).

10. A. Hariri et al., “Development of low-cost photoacoustic imaging
systems using very low-energy pulsed laser diodes,” J. Biomed. Opt.
22(7), 075001 (2017).

11. C. Li et al., “High-numerical-aperture-based virtual point detectors for
photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).

12. M. K. A. Singh et al., “In Vivo demonstration of reflection artifact
reduction in photoacoustic imaging using synthetic aperture photo-
acoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express
7(8), 2955–2972 (2016).

13. M. K. A. Singh et al., “Photoacoustic reflection artifacts reduction using
photoacoustic-guided focused ultrasound: comparison between plane-
wave and element-by-element synthetic backpropagation approach,”
Biomed. Opt. Express 8(4), 2245–2260 (2017).

14. A. Rosenthal et al., “Fast semi-analytical model-based acoustic inver-
sion for quantitative optoacoustic tomography,” IEEE Trans. Med.
Imaging 29(6), 1275–1285 (2010).

15. L. Ding et al., “Efficient non-negative constrained model-based inver-
sion in optoacoustic tomography,” Phys. Med. Biol. 60(17), 6733–6750
(2015).

16. M. Li et al., “Model-based correction of finite aperture effect in photo-
acoustic tomography,” Opt. Express 18(25), 26285–26292 (2010).

17. E. Candes et al., “Sparsity and incoherence in compressive sampling,”
Inverse Prob. 23(3), 969–985 (2007).

18. E. J. Candes et al., “An introduction to compressive sampling,” IEEE
Signal Process. Mag. 25(2), 21–30 (2008).

19. I. U. Haq et al., “Sparse-representation-based denoising of photoacous-
tic images,” Biomed. Phys. Eng. Express 3(4), 045014 (2017).

20. Y. Han et al., “Sparsity-based acoustic inversion in cross-sectional
multiscale optoacoustic imaging,”Med. Phys. 42(9), 5444–5452 (2015).

21. H. Moradi et al., “Deconvolution based photoacoustic reconstruction
with sparsity regularization,” Opt. Express 25(3), 2771–2789 (2017).

22. C. Huang et al., “Full-wave iterative image reconstruction in photo-
acoustic tomography with acoustically inhomogeneous media,” IEEE
Trans. Med. Imaging 32(6), 1097–1110 (2013).

23. Z. Guo et al., “Compressed sensing in photoacoustic tomography in
vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

24. D. M. Egolf et al., “Sparsity-based reconstruction for super-resolved
limited-view photoacoustic computed tomography deep in a scattering
medium,” Opt. Lett. 43(10), 2221–2224 (2018).

25. J. M. Bioucas-Dias et al., “A new TwIST: two-step iterative shrinkage/
thresholding algorithms for image restoration,” IEEE Trans. Image
Process. 16(12), 2992–3004 (2007).

26. B. E. Treeby et al., “k-Wave: MATLAB toolbox for the simulation and
reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2),
021314 (2010).

27. C. C. Paige et al., “LSQR: an algorithm for sparse linear equations and
sparse least squares,” ACM Trans. Math. Software 8(1), 43–71 (1982).

28. J. R. Cook et al., “Tissue-mimicking phantoms for photoacoustic and
ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).

Ruibo Shang received his bachelor’s degree in optoelectronic sci-
ence and technology from Nankai University, China, and his master’s
degree in electrical engineering from Virginia Tech. Currently, he is
pursuing his PhD at Thayer School of Engineering of Dartmouth
College. His research focuses on computational photoacoustic and
ultrasound imaging.

Richard Archibald was advised by Professor Anne Gelb and
received his PhD in mathematics from Arizona State University in
2002. He is an applied mathematician in the Computational and
Applied Mathematics Group at Oak Ridge National Laboratory. His
research interests lie in data reconstruction and analysis, high-
order edge detection, large scale optimization, time integration, and
uncertainty quantification.

Anne Gelb received her PhD from the Division of Applied
Mathematics at Brown University. She is the John G. Kemeny
Parents Professor in the Department of Mathematics at Dartmouth
College. Her research is focused on image reconstruction, feature
detection, algorithm development for reconstructing magnetic reso-
nance images, and feature extraction for synthetic aperture radar.

Geoffrey P. Luke received his PhD in electrical engineering from the
University of Texas at Austin, where he developed innovative ultra-
sound-based molecular imaging methods and contrast agents for
cancer applications. He is an assistant professor at Thayer School
of Engineering of Dartmouth College and a member of the Cancer
Imaging and Radiobiology Research Program at Norris Cotton
Cancer Center. He directs the Functional and Molecular Imaging
Research Laboratory. His current research in molecular imaging
ranges from basic science to clinical translation and incorporates
light, sound, and nanotechnology.

Journal of Biomedical Optics 031015-9 March 2019 • Vol. 24(3)

Shang et al.: Sparsity-based photoacoustic image reconstruction with a linear array. . .

https://doi.org/10.1063/1.2195024
https://doi.org/10.1063/1.2195024
https://doi.org/10.1038/nbt839
https://doi.org/10.1038/nbt839
https://doi.org/10.1126/science.1216210
https://doi.org/10.2174/15734056113096660006
https://doi.org/10.1364/OL.42.004379
https://doi.org/10.1007/s10439-011-0449-4
https://doi.org/10.1016/j.pacs.2015.09.001
https://doi.org/10.1063/1.3505113
https://doi.org/10.1364/OE.23.001816
https://doi.org/10.1117/1.JBO.22.7.075001
https://doi.org/10.1063/1.2963365
https://doi.org/10.1364/BOE.7.002955
https://doi.org/10.1364/BOE.8.002245
https://doi.org/10.1109/TMI.2010.2044584
https://doi.org/10.1109/TMI.2010.2044584
https://doi.org/10.1088/0031-9155/60/17/6733
https://doi.org/10.1364/OE.18.026285
https://doi.org/10.1088/0266-5611/23/3/008
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1088/2057-1976/aa7a44
https://doi.org/10.1118/1.4928596
https://doi.org/10.1364/OE.25.002771
https://doi.org/10.1109/TMI.2013.2254496
https://doi.org/10.1109/TMI.2013.2254496
https://doi.org/10.1117/1.3381187
https://doi.org/10.1364/OL.43.002221
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1117/1.3360308
https://doi.org/10.1145/355984.355989
https://doi.org/10.1364/BOE.2.003193

