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Abstract. Diffuse optical tomography (DOT) is a promising noninvasive imaging modality and is capable
of providing functional characteristics of biological tissue by quantifying optical parameters. The DOT image
reconstruction is ill-posed and ill-conditioned, due to the highly diffusive nature of light propagation in biological
tissues and limited boundary measurements. The widely used regularization technique for DOT image
reconstruction is Tikhonov regularization, which tends to yield oversmoothed and low-quality images containing
severe artifacts. It is necessary to accurately choose a regularization parameter for Tikhonov regularization.
To overcome these limitations, we develop a noniterative reconstruction method, whereby optical properties
are recovered based on a back-propagation neural network (BPNN). We train the parameters of BPNN
before DOT image reconstruction based on a set of training data. DOT image reconstruction is achieved by
implementing a single evaluation of the trained network. To demonstrate the performance of the proposed
algorithm, we compare with the conventional Tikhonov regularization-based reconstruction method. The
experimental results demonstrate that image quality and quantitative accuracy of reconstructed optical proper-
ties are significantly improved with the proposed algorithm. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JBO.24.5.051407]
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1 Introduction
Diffuse optical tomography (DOT) has shown a great potential
for breast imaging1–9 and functional brain imaging,10–12

which use near-infrared light in the spectral range of 600 to
950 nm to quantify tissue optical (absorption and scattering)
coefficients. There is a critical need to develop an efficient
image reconstruction algorithm for DOT. Recovering the inter-
nal distribution of optical properties is a severely ill-posed and
under-determined inverse problem, due to light propagation in
highly scattering biological tissues and limited number of mea-
surements,13,14 which makes image reconstruction challenging.

Although both linear and nonlinear reconstruction algo-
rithms for DOT are available,14 considerable efforts have been
made to develop various reconstruction algorithms to improve
quantitative accuracy and image quality.14–22 To date, the ill-
posedness of the inverse problem in DOT can be alleviated
by employing a regularization technique, which utilizes a data
fitting term together with a regularizer (L2 or L1 norm, etc.) to
suppress the effect of measurement noise and modeling errors.23

When the regularizer is a L2 norm, the reconstruction algo-
rithm becomes the well-known Tikhonov regularization method,
which imposes restrictions on the L2 norm of the optical
properties23 and is optimal when the distribution of optical
properties subjects to Gaussian distribution.24 The merits of
Tikhonov regularization are simple, and easy to be imple-
mented. However, the L2 norm will oversmooth reconstructed

images and yield low-quality images by penalizing large
values.23 An alternative regularizer is total variation (TV)
norm, which is the ideal choice when the distribution of
optical properties is known to be piecewise constant.24 Another
possible regularizer is Lp norm (0 < p <¼ 1), which poses
a sparsity constraint on the optical properties. The quality of
reconstructed images can be improved with the use of sparsity
regularization.23,25

The abovementioned algorithms are generally iterative
reconstruction algorithms.14 These algorithms require heavy
computation and large storage memory because the forward
problem must be solved repeatedly, and an updated distribution
of optical properties must be found at each iterative step.14

However, iterative reconstruction algorithms have limited
capability in terms of reconstruction accuracy and image
quality,26 which are important for accurate diagnosis of breast
cancers. In addition, how to accurately choose parameters,
particularly regularization parameter, for iterative reconstruction
algorithms needs to be further considered.27

Recently, artificial neural networks with various network
architectures, including deep convolutional neural network,28,29

generative adversarial networks,30 and multilayer perceptron,31

have achieved significant improvements over existing iterative
reconstruction methods in the quality of reconstructed images.
It is likely that image recovery in DOT benefits from these
important developments.

In this work, we investigated the feasibility and effectiveness
of a back-propagation (BP) neural network (BPNN) to recover
the distribution of optical properties in DOT. BPNN is a widely
used neural network because it has many advantages. For

*Address all correspondence to Zhe Li, E-mail: lizhe1023@bjut.edu.cn;
KebinJia,kebinj@bjut.edu.cn

Journal of Biomedical Optics 051407-1 May 2019 • Vol. 24(5)

Journal of Biomedical Optics 24(5), 051407 (May 2019)

https://doi.org/10.1117/1.JBO.24.5.051407
https://doi.org/10.1117/1.JBO.24.5.051407
https://doi.org/10.1117/1.JBO.24.5.051407
https://doi.org/10.1117/1.JBO.24.5.051407
https://doi.org/10.1117/1.JBO.24.5.051407
https://doi.org/10.1117/1.JBO.24.5.051407
mailto:lizhe1023@bjut.edu.cn
mailto:lizhe1023@bjut.edu.cn
mailto:lizhe1023@bjut.edu.cn
mailto:kebinj@bjut.edu.cn


example, BPNN is simple, efficient at computing the gradient
descent, and straightforward to implement. The basic procedure
of BPNN includes the forward propagation of input data and the
reverse transmission of output error.32 More detailed introduc-
tion about BPNN can be found in Refs. 33–39. The forward
propagation of input data is to transmit input data from the
input layer through a series of hidden layers toward the output
layer, which builds the relationship between input data and out-
put data. The reverse transmission of output error between the
calculated and the ground true output is backward propagated
from the output layer through the hidden layers to the first
layer to adjust the connection weights and bias variables of neu-
rons. By repeatedly applying this procedure, the output error is
adjusted to an expected range. We validate the proposed method
using simulation experiments and compare BPNN with the
popular Tikhonov regularization. Our results demonstrate that
our method provides higher accuracy and superior image quality
than Tikhonov regularization in recovering a single inclusion or
two closely spaced inclusions.

The remainder of the paper is organized as follows. Section 2
describes the light propagation model, BPNN, and evaluation
metrics. Experimental results and comparisons are presented
in Sec. 3. Finally, we present a discussion of results with our
conclusions and future work in Sec. 4.

2 Methods

2.1 Forward Model

The light propagation in biological tissues can be modeled by
the steady diffusion equation,13,14 which can be described as
follows:

EQ-TARGET;temp:intralink-;e001;63;408−∇ · DðrÞ∇ΦðrÞ þ μaðrÞΦðrÞ ¼ q0ðrÞ; ðr ∈ ΩÞ; (1)

where Ω is the imaged object, ΦðrÞ is the photon fluence rate at
position r, D ¼ 1∕½3 � ðμa þ μ 0

sÞ� is the diffusion coefficient
(mm−1), μa is the absorption coefficient (mm−1), μ 0

s is the
reduced scattering coefficients (mm−1), and q0ðrÞ is the source
term.

Here, the boundary condition used for Eq. (1) is Robin-type
condition, which can be expressed as follows:13,14

EQ-TARGET;temp:intralink-;e002;63;300ΦðrÞ þ D
α
n̂ · ∇ΦðrÞ ¼ 0 ðr ∈ ∂ΩÞ; (2)

where ∂Ω is the surface boundary of imaged object Ω, α is the
boundary mismatch parameter, and n̂ is the outer normal on ∂Ω.

When the distributions of μa and D are known, light
measurements at the detectors can be calculated by solving
Eqs. (1) and (2) based on the finite-element method,40 which
can be modeled with the following equation:

EQ-TARGET;temp:intralink-;e003;63;193fðxÞ ¼ Φm; (3)

where x ∈ R2N and Φm ∈ RM represent the optical properties
(μa and μ 0

s) and the measurements at the detectors, respectively;
N andM are the number of finite-element nodes and the number
of boundary measurements, respectively; and fð·Þ is the forward
operator that relates the unknown distribution of optical proper-
ties to the boundary measurements.

2.2 Back-Propagation Neural Network-Based
Reconstruction

To improve the performances of iterative reconstruction algo-
rithms in DOT, here we develop a reconstruction algorithm
based on a BPNN. BPNN is divided into three types of layers:
the input layer (L0), the fully connected hidden layer (L1), and
the predictable output layer (L2). The architecture of the three-
layer BPNN used for DOT image reconstruction is shown in
Fig. 1. We train the neural network from the boundary measure-
ments to learn a DOT reconstruction. In this work, the reduced
scattering coefficient (μ 0

s) is assumed to be spatially constant and
known and we recover only the absorption coefficient (μa).
Therefore, for the network training, boundary measurements
Φiði ¼ 1; : : : ;MÞ (i.e., amplitude) are regarded as the input
vector, which are generated by solving the forward model using
open source software Nirfast,40 and the ground true distribution
of absorption coefficient xjðj ¼ 1; : : : ; NÞ is served as the
expected output.

During the training process, the error between the predicted
output and the true output is backward propagated from the out-
put layer to the hidden layer to adjust the weights and biases in
the opposite direction to the signal flow with respect to each
individual weight.32 By repeatedly applying this procedure
for each sample in the training set, the learning process can
converge.

The BPNN-based reconstruction algorithm can be described
as follows:36

Step 1: Randomly initialize the weights w½l�
ij and the bias

variables v½l�j at the l’th ðl ¼ 1;2Þ layer, and set the stop
threshold δ and maximum number of iteration nmax;

Step 2: Compute the output o½l�j of the j’th neuron at the l’th
(l ¼ 1;2) layer using Eq. (4):

EQ-TARGET;temp:intralink-;e004;326;167o½l�j ¼ g

�XN½l�

i¼1

w½l�
ij y

½l−1�
i þ v½l�j

�
; (4)

where gð·Þ is the neuron activation function, y½l� is the
input of the l’th layer, N½l� is the number of the l’th
layer neurons. Here, y½0� is the input of the network,
i.e., Φm.

Fig. 1 The architecture of the three-layer BPNN used in DOT image
reconstruction.
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Step 3: Calculate the mean square error for the output layer
(l ¼ 2) between the ground truth output dj and the
predicted output oj according to Eq. (5):

EQ-TARGET;temp:intralink-;e005;63;719err
½2�
j ¼ −g 0ðo½2�j Þðdj − o½2�j Þ ðj ¼ 1; : : : ; N½2�Þ (5)

and compute the mean square error in the hidden layer
(l ¼ 1) using Eq. (6):

EQ-TARGET;temp:intralink-;e006;63;664err
½1�
j ¼ g 0ðo½1�j Þ

XN½2�

k¼1

err
½2�
k w½2�

jk ; (6)

where g 0ð·Þ is the derivative of neuron activation
function.

Step 4: Adjust the connection weights and biases between
layers at the n’th iteration based on Eqs. (7) and (8):

EQ-TARGET;temp:intralink-;e007;63;572v½l�ij ðnþ 1Þ ¼ v½l�i ðnÞ þ η · err½l�j (7)

EQ-TARGET;temp:intralink-;e008;63;538w½l�
ij ðnþ 1Þ ¼ w½l�

ij ðnÞ þ η · err½l�j · o½l−1�i (8)

where η is the learning rate, which controls the speed of
adjusting neural network weights based on the gradient
descent method.

Step 5: Go back to Step 2 if the mean squared error of
the neural network output is larger than the given stop
threshold δ, or n is smaller than nmax, or the loss function
is less than ε; otherwise, the training processing will be
terminated and output the weights and biases.

Step 6: Directly reconstruct the distribution of absorption
coefficient by evaluating the trained network.

In our algorithm, the Tansig function is adopted as the
activation function. Its formula is given in Eq. (9):

EQ-TARGET;temp:intralink-;e009;63;369gðxÞ ¼ tansigðxÞ ¼ ex − e−x

ex þ e−x
; (9)

and its derivative is shown in Eq. (10):

EQ-TARGET;temp:intralink-;e010;63;316g 0ðxÞ ¼ 1 − ½gðxÞ�2: (10)

2.3 Evaluation Metrics

The performance of the proposed algorithm is accessed with
four evaluation metrics, including the absolute bias error
(ABE), mean square error (MSE),41,42 peak signal-to-noise
ratio (PSNR),43 and structural similarity index (SSIM).44 These
parameters are defined as follows:

EQ-TARGET;temp:intralink-;e011;63;199ABE ¼
P

N
i¼1 jxtrueðiÞ − xreconðiÞj

N
; (11)

EQ-TARGET;temp:intralink-;e012;63;157Var ¼
P

N
i¼1 jxtrueðiÞ − xreconj

N
; (12)

EQ-TARGET;temp:intralink-;e013;63;119MSE ¼ ABE2 þ Var; (13)

EQ-TARGET;temp:intralink-;e014;63;93PSNR ¼ 10 log10

�½maxðxreconÞ�2
MSE

�
; (14)

EQ-TARGET;temp:intralink-;e015;326;752SSIM ¼ ð2x̄truex̄recon þ c1Þð2σtrue;recon þ c2Þ
ðx̄2recon þ x̄2recon þ c1Þðσ2true þ σ2recon þ c2Þ

; (15)

where xtrueðiÞ and xreconðiÞ are the true and reconstructed
absorption coefficients at the finite node i, respectively; x̄pðp ¼
true or reconÞ and σpðp ¼ true or reconÞ are the mean and
standard derivation for the ground true (p ¼ true) or recon-
structed (p ¼ recon) absorption coefficients, respectively;
σtrue;recon is the covariance between the ground true and the
reconstructed absorption coefficients, and c1; c2 are stabilization
constants used to prevent division by a small denominator;44

N is the above mentioned number of finite-element nodes.
The ABE and MSE are used to compare the accuracy of recon-
structed images. The PSNR (unit: dB) is used to compare the
restoration of the images, without depending strongly on the
image intensity scaling.15 SSIM is used to measure the similarity
between the true and the reconstructed images, and an SSIM
value of 1.0 refers to identical images. We expect lower ABE
and MSE, while higher PSNR and SSIM, which show better
performance.

3 Results

3.1 Data Preparation

A 2-D circular phantom with a diameter of 80 mm was used to
generate dataset. It was discretized into 2001 finite-element
nodes and 3867 triangular elements. The absorption coefficient
(μa) and the reduced scattering coefficient (μ 0

s) of the phantom
were 0.01 mm−1 and 1.0 mm−1, respectively. A total of 16
sources and 16 detectors were uniformly arranged along the
circumference of the phantom. For each source illumination,
data were collected at the remaining 15 detector locations,
thus leading to a total of 240 (16 × 15) measurements. To
generate simulation datasets, the phantom includes circular
inclusions associated with varied sizes, locations, and absorp-
tion coefficients. Initially, an inclusion with the diameter of
6, 8, or 10 mm was randomly placed at different locations
over the phantom. In this case, the absorption coefficients of
the inclusions were varied from 0.015 to 0.08 mm−1, leading
to 17075 geometries. Next, two inclusions, which have the
same radius of 8 mm, were placed at different edge-to-edge
distances over the phantom. In this case, the phantoms were
assigned different absorption coefficients (0.015, 0.02, 0.04,
0.06, or 0.08 mm−1) to each of its inclusions, leading to
5015 geometries. In all cases, the reduced scattering coefficients
of inclusions were assumed to be 1 mm−1, which were the same
as those of the background. Examples of geometries of gener-
ating data are shown in Fig. 2. Software Nirfast was used to
generate the simulation data,40 and 2% random Gaussian noise
was added to the measurement data. A total of 22,090 samples
which are data pairs contained input data and desired output data
were obtained, and were separated into training, validation, and
testing datasets. About 20,000 samples were used for training,
1045 for validation, and 1045 for testing.

In the following experiments, the neural network has three
layers: an input layer (240 neurons), a fully connected hidden
layer, and an output layer (2001 neurons). To determine the
number of neurons in the hidden layer, an empirical formula
that has been introduced in Ref. 45 was used. The formula is
given by

EQ-TARGET;temp:intralink-;e016;326;86s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðnþ 2Þ

p
þ 1; (16)
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where s is the number of the hidden layer units, m and n are the
numbers of input neurons and output neurons. In our experi-
ments, the values of m and n are 240 and 2001, respectively.
According to Eq. (16), the calculated number of neurons in hid-
den layer is 694.3. In our experiments, the number of neurons in
the hidden layer was set to 695. The learning rate η, the stopping
threshold δ, the maximum number of iteration and the threshold
ε were set to be 10, 1 × 10−5, 50,000 and 2 × 10−5, respectively.
BPNN was trained for 16,000 epochs to minimize the MSE
between the true and the recovered images. It took about
26 h to train the BP neural network. The experiments ran on
a personal computer with Intel Core i7 CPU at 2.8 GHz and
8 GB RAM.

For the purpose of comparison, we also performed Tikhonov
regularization-based DOT reconstruction based on the Nirfast
software.40 Tikhonov regularization-based DOT reconstruction
is achieved using a least squares (LS) minimization technique,
which is solved in the Levenberg–Marquardt procedure.40

The objective function in the Tikhonov regularization-based
reconstruction algorithm typically consists of a data fidelity
term of weighted LS and a regularization term of L2 norm,
balanced by a regularization parameter λ. For λ at the k’th
iteration, it was setting as λk ¼ 10 �max½diagðJTk JkÞ�, where
Jk is the Jacobian matrix at the k’th iteration. The stopping
criterion for Tikhonov regularization is defined such that
the algorithm stops when the change in the difference
between the forward data and the reconstructed data of
two successive iterations is less than 2% or the maximum num-
ber of iteration (50) is reached. The initial regularization
parameter is set to be 10. More detailed information about
Tikhonov regularization-based DOT reconstruction can be
found in Ref. 40.

3.2 Experimental Results

In this subsection, we provide numerical simulations to illustrate
recovered results using BPNN and compare it with widely used
Tikhonov regularization-based reconstruction method. Figure 3
shows some examples of recovered absorption coefficient using
the two algorithms in the case of single inclusion. In Fig. 3, the
size, the location, and the absorption coefficient of inclusions
are varied. The ground true images are shown in the top row of
Fig. 3, the reconstructed images using Tikhonov regularization
and BPNN are given in the second and the third rows of Fig. 3,
respectively. The corresponding cross-section profiles through
their centers of the inclusions and along the x axis are plotted
in the last row of Fig. 3. From the last row of Fig. 3, we can
see that the maximum values of recovered μa using Tikhonov
regularization are much higher compared to their ground truths,
the recovered μa using BPNN matched with their true values.
The quantitative comparisons for the five cases in Fig. 3 are
listed in Table 1. Compared with Tikhonov regularization,
the values of ABE and MSE obtained using BPNN are signifi-
cantly reduced, and the values of PSNR and SSIM are greatly
improved. As an example, the values of ABE and MSE in
Fig. 3(a) are reduced by 80% and 61%, respectively, which
show that BPNN can yield higher reconstruction accuracy.
It is evident that BPNN provides high-quality images with less
artifacts in the background than those of Tikhonov regulariza-
tion. Therefore, BPNN can have a PSNR gain of about 4.4 dB
over Tikhonov regularization while the higher value of SSIM is
obtained. The value of SSIM is improved by 424%, which indi-
cates that the recovered image is nearly the samewith the ground
truth image. The similar results can also be observed in other
images of Fig. 3. These results show that BPNN outperforms
Tikhonov regularization in terms of higher accuracy and better

Fig. 2 Examples of geometries of generating datasets. (a)–(c) The examples of geometry with a single
inclusion that has different locations and sizes. (d)–(f) The examples of geometries with two inclusions
that have different edge-to-edge distance and locations. The absorption coefficients of inclusions in each
geometry are varied from 0.015 to 0.08 mm−1.
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Fig. 3 (a)–(e) Reconstructed images of a single inclusion with different sizes and different values of
absorption coefficients. The first row is the true images, the second and third rows are the recovered
images using Tikhonov regularization and BPNN, respectively. The last row is the corresponding profiles
through the center of inclusions and along x axis. The sizes and the true values of absorption coefficients
for each case are shown at the top of the figure. The reconstructed images of each column are shown at
the same scale.

Table 1 The quantitative comparisons presented in Fig. 3.

Metric Method Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d) Fig. 3(e)

ABE Tikhonov 4.35 × 10−4 8.52 × 10−4 8.70 × 10−4 1.69 × 10−3 2.50 × 10−3

BPNN 8.51 × 10−5 1.00 × 10−4 1.77 × 10−4 4.38 × 10−4 8.60 × 10−4

MSE Tikhonov 3.75 × 10−7 1.62 × 10−6 3.35 × 10−6 2.06 × 10−5 6.19 × 10−5

BPNN 1.45 × 10−7 2.30 × 10−7 9.78 × 10−7 5.63 × 10−6 1.90 × 10−5

PSNR (dB) Tikhonov 27.37 23.43 26.10 24.44 21.58

BPNN 31.75 32.40 29.64 26.47 25.28

SSIM Tikhonov 0.17 0.20 0.45 0.75 0.84

BPNN 0.89 0.97 0.96 0.96 0.96
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image quality. In addition, the results also show that the image
quality obtained by Tikhonov regularization is improved with
increment of size and absorption coefficient of inclusions. By
contrast, BPNN can always obtain robust reconstruction results.

Figure 4 shows the capability of BPNN to recover images
with two inclusions. And the corresponding quantitative results
are compiled in Table 2. The two inclusions are observable and

reconstructed with their centers at the correct positions for the
two algorithms. But it can be seen that the shapes and the edges
of the inclusions can be clearly observed by BPNN even when
the edge-to-edge distance is 1.3 mm. However, the absorption
coefficients of the inclusions far away from the boundary were
underestimated and the images were somehow distorted for the
Tikhonov regularization-based reconstruction method. For each

Fig. 4 (a)–(d) Examples of reconstructed images for increased intensity of absorption coefficient but with
decreased edge-to-edge distance in the case of two inclusions. The first row is the ground truth images.
From the second row to the last row, the images are reconstructed using Tikhonov regularization and
BPNN, respectively. The edge-to-edge distance and the true values of absorption coefficients for
each case are shown at the top of the figure. The reconstructed images of each column are shown at
the same scale.

Table 2 The quantitative comparisons in the case of two inclusions presented in Fig. 4.

Metric Method Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d)

ABE Tikhonov 1.30 × 10−3 1.07 × 10−3 2.07 × 10−3 2.84 × 10−3

BPNN 1.28 × 10−4 2.10 × 10−4 5.50 × 10−4 6.04 × 10−4

MSE Tikhonov 2.83 × 10−6 2.74 × 10−6 1.89 × 10−5 4.90 × 10−5

BPNN 3.13 × 10−7 1.16 × 10−6 1.01 × 10−5 9.29 × 10−6

PSNR (dB) Tikhonov 22.55 25.35 21.76 21.92

BPNN 28.55 25.39 22.0 25.88

SSIM Tikhonov 0.09 0.36 0.67 0.78

BPNN 0.92 0.92 0.91 0.97
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evaluation metric, we draw a bar plot of test images in Fig. 5.
As the higher accuracy of BPNN can be clearly observed in
Fig. 5 and Table 2, we do not compare the cross-sections of dif-
ferent images here. Similar to the previous simulation results of
one inclusion, BPNN reduces the artifacts and has offered more
than 55.0%, 46.6%, and 16.7% improvement in ABE, MSE, and
SSIM, respectively, compared with Tikhonov regularization-
based reconstruction algorithm. The PSNRs in Figs. 4(b) and
4(c) are slightly higher than those of the Tikhonov regulariza-
tion-based reconstruction algorithm because the absorption
coefficients reconstructed by Tikhonov regularization have been
overestimated with peak values of 0.03 and 0.05 mm−1, respec-
tively. By contrast, the peak values obtained by BPNN are
0.02 and 0.04 mm−1, which are the same as the true targeted
values. For Fig. 4, BPNN can have an average PSNR gain of
about 2.56 dB over Tikhonov regularization. Overall, BPNN
can obtain better performance.

Here, we reported the results of 1045 samples, which was
randomly selected from the dataset to further evaluate the
performance of our algorithm. We use the mean and standard
deviation (SD) of ABE, MSE, PSNR, and SSIM to evaluate
the performances of the two algorithms. The boxplots for the
statistical results are presented in Fig. 6. And the corresponding
quantitative comparisons are shown in Table 3.

For BPNN, the ABE had a mean value (SD) of 3.41 × 10−4

(2.50 × 10−4); for Tikhonov regularization, the ABE had a mean
value (SD) of 1.50 × 10−3 (9.26 × 10−4). The accuracy improve-
ment is 77.3% compared with Tikhonov regularization. The
MSE of BPNN has an average of 5.97 × 10−6, while the average
for Tikhonov regularization is 2.30 × 10−5. The improvement in
the average MSE of BPNN with respect to Tikhonov regulari-
zation is 74.0%. Furthermore, the average PSNR of BPNN is
improved from 24.34 to 27.79 dB compared with Tikhonov
regularization. The average value of SSIM (0.91) obtained
by BPNN is significant as compared to the average value of
SSIM (0.46) produced by Tikhonov regularization. For every
one of these metrics, BPNN performs better than Tikhonov
regularization being compared.

A student’s t-test is used to determine whether there is stat-
istical significance of the improvement between the evaluation
metrics of Tikhonov regularization and BPNN. Significance is
achieved at the 95% confidence interval using a two-tailed
distribution. The corresponding p-values are also listed in
Table 3. Statistically significant differences (p values <0.001)
were found in the four evaluation metrics for BPNN versus
Tikhonov regularization results, which further confirms that
BPNN achieves more stable and effective performance than
Tikhonov regularization.

Fig. 5 Comparisons of evaluation metrics for reconstructed images of two inclusions using Tikhonov
regularization and BPNN. (a) ABE; (b) MSE; (c) PSNR; and (d) SSIM.
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4 Discussion and Conclusion
Iterative reconstruction algorithms with regularization have
become the dominant approach for solving DOT inverse prob-
lem over the past few decades. However, it remains difficult
to provide high-quality images. In this study, we explored

using a BPNN to recover optical properties to improve the
reconstruction accuracy and image quality of DOT. This was
motivated by the fact that popular Tikhonov regularization-
based reconstruction algorithms tend to produce oversmoothed
images, which leads to poor reconstruction accuracy and bad

Fig. 6 The boxplots for the statistical results (N ¼ 1045). (a) ABE; (b) MSE; (c) PSNR; and (d) SSIM.

Table 3 Mean ± SD of ABE/MSE/PSNR/SSIM for N ¼ 1045.

ABE MSE PSNR SSIM

Tikhonov 1.50 × 10−3 � 9.26 × 10−4 2.30 × 10−5 � 3.29 × 10−5 24.34� 2.43 0.46� 0.26

BPNN 3.41 × 10−4 � 2.50 × 10−4 5.97 × 10−6 � 8.07 × 10−6 27.79� 2.70 0.91� 0.06

P-value <0.001* <0.001* <0.001* <0.001*

*Significant values are marked.
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image quality. The superior performance of the proposed algo-
rithm was presented with numerical simulation experiments.
Our results indicate that significant improvements of accuracy
and image quality can be achieved by the proposed algorithm
when compared with the Tikhonov regularization-based algo-
rithm. Qualitative analysis demonstrated that our method can
outperform Tikhonov regularization up to 77.3%, 74.0%,
14.2%, and 97.8% in terms of ABE, MSE, PSNR, and SSIM,
respectively.

Furthermore, we compared the reconstructed results of
the proposed method to those of the L1 and TV regularized
reconstruction algorithms. The examples of reconstructed
images are shown in Fig. 7. For the L1 regularized recon-
struction algorithm, it was solved with the GPSR algorithm.46

For the TV regularized reconstruction algorithm, it was solved
by the Split Bregman algorithm.47 As for the regularization

parameters used in the two reconstruction algorithms, their
values were the same and were set to 0.01, which was tuned
manually to get the best performance. In the case of single
inclusion, the L1- or TV-based reconstruction algorithm can
obtain better images than the Tikhonov regularization-based
reconstruction algorithm in terms of less artifacts. In the case
of two inclusions, decreasing the edge-to-edge distance between
inclusions leads to degraded image quality for the L1- and
TV-based reconstruction algorithms. When the edge-to-edge
distance of inclusions decreased to 4.5 mm, the two inclusions
could not be discriminated for the TV-based reconstruction
algorithm. Compared to regularization-based reconstruction
algorithms (L2; L1, and TV), our algorithm performs the best in
reconstructing DOT images.

It is possible to obtain high-quality DOT images by training
a neural network, even when iterative reconstruction algorithms

Fig. 7 Reconstructed results by both L1 and TV regularization algorithms, along with the corresponding
reconstructions in Figs. 3 and 4. Top images: reconstructed images with a single inclusion. Bottom
images: reconstructed images with two inclusions.
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underperform. Compared to iterative reconstruction algorithms,
BPNN-based reconstruction algorithm is capable of: (1) improv-
ing the reconstruction accuracy with relatively stable perfor-
mance; (2) enhancing the image quality with fewer image
artifacts in the background; and (3) improving the spatial
resolution.

Currently, computational speed is still an open active
research area in DOT. To the best of our knowledge, the widely
used iterative reconstruction algorithms in DOT require to solve
the forward model and to calculate the Jacobian matrix at each
iteration.40 Therefore, the computational speed is relatively slow.
For example, the computational time for each reconstruction in
this study is about 1 to 2 min for Tikhonov regularization.
For this reason, an algorithm that can fast reconstruct the
distribution of optical properties is preferred. Although it takes
a rather longer time to train the neuron network for the proposed
algorithm, the training is implemented off-line. Once the
training is finished, the time for the reconstruction is in a few
seconds, which is practically useful for in vivo data.

The effects of different activation functions, including ReLU,
Sigmoid, and Tansig, were also examined. The representative
results are shown in Fig. 8. Figure 8 shows that the distribution
of absorption properties cannot be accurately reconstructed
when using either ReLU or sigmoid as the activation function.
The mean values of SSIM were 0.02 and 0.03 when using ReLU
and sigmoid as the activation function, respectively. There
are significant differences between the reconstructed and true
images. By contrast, better images can be achieved with the acti-
vation function of Tansig and the mean SSIM is 0.91. However,
it is still unclear why the activation function of Tansig works for
DOT reconstruction.

How to determine the number of neurons in the hidden layer
needs to be investigated. Except for Eq. (16), one of the typical
equations which can be used to determine the number of neu-
rons in the hidden layer is log2ðnÞ,48 where n is the number of
input neurons. In our experiments, n is 240. Therefore, log2ðnÞ
is about 8. We trained our network with eight hidden neurons.

Using the trained network, DOT image reconstruction was per-
formed. The examples of reconstructed images are shown in
Fig. 9. Figure 9 shows that the distribution of absorption
coefficient cannot be accurately reconstructed. The reason is
that using too few neurons in the hidden layer will result in
underfitting.

The effects of the learning rate on the performance of BPNN
were also analyzed. The learning rate was set to 0.01, 0.1, 1, 10,
or 50. The optimal learning rate was the one with the lowest
validation loss. In the experiments, the activation function
was fixed as Tansig. When the learning rate was set to 50,
the validation loss fluctuated over epochs. Therefore, the learn-
ing rate of 50 was discarded. The validation losses were 0.15,
0.09, 0.04, and 0.02, corresponding to the learning rates, 0.01,
0.1, 1, and 10, respectively. When learning rate was 10, the
lowest validation loss was obtained. We also note that a higher
learning rate effectively speeds up the convergence for the train-
ing procedure. Therefore, the learning rate was set to 10 in our
experiments.

Note that several recent publications have applied various
deep learning architectures for solving inverse problems.49–51

For example, a recent work by Sun et al. has shown that a con-
volutional neural network can be applied to perform image
reconstruction under multiple scattering problem in diffraction
tomography.49 However, our focus is on diffuse optical tomog-
raphy. Recently, an artificial neural network-based approach is
developed to estimate the inclusion location, then the estimated
inclusion location is used as a-priori knowledge in DOT
reconstruction.50 Therefore, the approach is not to reconstruct
DOT images directly by learning an artificial neural network.
Deep learning technique has been recently applied to reconstruct
DOT images, and its superiority has been indicated by compar-
ing with an analytic technique.51 The average value of SSIM
they reported is 0.46, which is relatively low. By contrast,
a higher value of SSIM is obtained by our algorithm, and its
value is 0.91. A future study would be to compare the perfor-
mances of the two algorithms in the same datasets.

Fig. 8 The reconstructed images using different activation functions. (a) True images; (b) and (c) recon-
structed images with activation functions of ReLU and sigmoid, respectively.
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Although the proposed BPNN method has achieved promis-
ing results, our work could still be considered as a preliminary
attempt of applying neural network in DOT; its application
in DOT is still very challenging. The performance of BPNN
depends on the training data; however, it would be difficult
to acquire a sufficient number of real data for training in patient
studies. An available strategy is to create training data pairs
from breast geometries with known optical properties and the
real data is for evaluation. Breast geometries can be obtained
from breast MRI images. Since breast geometries have different
sizes and shapes, the finite-element meshes generated from
breast geometries are different, which leads to different
BPNN architectures. To deal with the problem, pixel basis pro-
vides a solution.40 Each finite-element mesh is mapped to the
same pixel basis for network training. Therefore, the trained
BPNN will be a universal network. Certain challenges remain
which are the subject of further study, including the effect of
heterogeneity in the background region as well as performance
evaluation using clinical patient data.
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