Single acquisition label-free histology-like imaging with dual-contrast photoacoustic remote sensing microscopy (Errata)

Benjamin Ecclestone,a,b Deepak Dinakaran,b,c and Parsin Haji Rezaa,*

aUniversity of Waterloo, Faculty of Engineering, Systems Design Engineering, PhotoMedicine Labs, Waterloo, Ontario, Canada
bBillumiSonics, Waterloo, Canada
cUniversity of Alberta, Department of Oncology, Edmonton, Alberta, Canada

[DOI: 10.1117/1.JBO.26.5.056007]

This article [J. Biomed. Opt. 26(5), 056007 (2021) doi: 10.1117/1.JBO.26.5.056007] was originally published on 25 May 2021 with erroneous citation numbering in the reference list and in the text.

In the reference list, the following references were corrected:

In the body of the text, the following citations were corrected:

- from 12 to 13, for the sentence
 - “Acoustic transducers are typically bulky, have known interoperator technique reliability issues, and sometimes require immersion in a coupling media such as water to function.”

- from 13 to 14, for the sentences
 - “PARS replaces the acoustically coupled ultrasound transducer with a detection laser.”
 - “Photoacoustic signals are then detected as pressure-induced modulations in the back-scattered magnitude of the detection beam.”
 - “Observing backscattering in a reflection mode architecture allows PARS to image thick samples.”

- from 14 and 15, to 15-18, for the sentence
 - “Moreover, PARS may provide chromophore-specific contrast by selecting excitation wavelengths to target unique biomolecule absorption spectra.”
from 19 and 20, to 17 and 18, for the sentences

- “Previously, PARS has provided complete H&E emulation using a tunable excitation source to independently target the absorption peaks of DNA and cell membrane structures.”
- “While effective in both thin sections and tissue blocks, this technique was largely limited in field of view, resolution, and imaging speed since it required the use of a slow (1 kHz) tunable excitation source.”

from 13 to 14, for the sentences

- “In PARS systems, a cofocused pulsed excitation and continuous wave detection laser pair are used to capture photoacoustic absorption contrast.”
- “The excitation induces photoacoustic signals by depositing focused pulses of optical energy into the sample.”
- “The absorption contrast is then captured as nanosecond scale pressure-induced modulations in the backscattered intensity of the cofocused detection laser.”
- “Usually, to capture MHz-scale PARS modulations, the time-resolved backscattering magnitude is band pass filtered to isolate the absorption signal.”

from 16 and 17, to 17 and 18 for the sentences

- “Previous implementations developed by our group leverage a multiwavelength tunable excitation to capture hyperspectral images of several chromophores in the tissue.”
- “In this implementation, we use a 50-kHz UV excitation, which provides emulated H&E images substantially faster than the 1-kHz tunable source used in previous studies.”

The above-listed errors were corrected, and the article was republished on 26 May 2021.