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Abstract

Significance: Optical properties (absorption coefficient and scattering coefficient) of tissue
are the most critical parameters for disease diagnosis-based optical method. In recent years,
researchers proposed spatial frequency domain imaging (SFDI) to quantitatively map tissue opti-
cal properties in a broad field of contactless imaging. To solve the limitations in wavebands
unsuitable for silicon-based sensor technology, a compressed sensing (CS) algorithm is used
to reproduce the original signal by a single-pixel detectors. Currently, the existing single-pixel
SFDI method mainly uses a random sampling policy to extract and recover signals in the acquis-
ition stage. However, these methods are memory-hungry and time-consuming, and they cannot
generate discernible results under low sampling rate. Explorations on high performance and
efficiency single-pixel SFDI are of great significance for clinical application.

Aim: Fourier single-pixel imaging can reconstruct signals with less time and space costs and
has fewer reconstruction errors. We focus on an SFDI algorithm based on Fourier single-pixel
imaging and propose our Fourier single-pixel image-based spatial frequency domain imaging
method (FSI-SFDI).

Approach: First, we use Fourier single-pixel imaging algorithm to collect and compress signals
and SFDI algorithm to generate optical parameters. Given the basis that the main energy of gen-
eral image signals is concentrated in the range of low frequency of Fourier frequency domain, our
FSI-SFDI uses a circular-sampling scheme to sample data points in the low-frequency region.
Then, we reconstruct the image details from these points by optimization-based inverse-FFT
method.

Results: Our algorithm is tested on simulated data. Results show that the root mean square error
(RMSE) of optical parameters is lower than 5% when the data reduction is 92%, and it can
generate discernible optical parameter image with low sampling rate. We can observe that our
FSI-SFDI primarily recovers the optical properties while keeping the RMSE under the upper
bound of 4.5% when we use an image with 512 × 512 resolution as the example for calculation
and analysis. Not only that but also our algorithm consumes less space and time for an image
with 256 × 256 resolution, the signal reconstruction takes only 1.65 ms, and requires less RAM
memory. Compared to CS-SFDI method, our FSI-SFDI can reduce the required number of mea-
surements through optimizing algorithm.

Conclusions:Moreover, FSI-SFDI is capable of recovering high-quality resolvable images with
lower sampling rate, higher-resolution images with less memory and time consumed than pre-
vious CS-SFDI method, which is very promising for clinical data collection and medical
analysis.
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1 Introduction

Recent advances in optical imaging show promising applications in biomedical areas due to the
potential correlation between the optical properties of biological tissue and biochemical
composition.1–3 Among these technologies, spatial frequency domain imaging (SFDI) has war-
ranted closer attention in that SFDI is effective to derive tissue optical parameters in a noncontact
manner.4,5 The key of SFDI is acquiring the absorption and scattering coefficients of the tissues
by computing on the pattern image that is captured by the hyperspectral imaging cameras on
spatially modulated light.6

However, the significant issues in SFDI research are as follows: The existing SFDI methods
use a camera for data collection, which relies on electronics integration (silicon) and is limited by
CCD and CMOS digital technology. In wavebands unsuitable for silicon-based sensor technol-
ogy, imaging is considerably more complicated, such as the infrared or deep ultraviolet. Cameras
with the required resolution at wavelengths where silicon is blind are more expensive. Recently,
several attempts have been tried to fix the issue (1) by introducing an SFDI system that is based
on compressed sensing theory (CS), named CS-SFDI.7 CS method uses a single-pixel detector
to collect the images and then reconstructs the images with fewer sampling points. The most
frequently used method of CS is to reconstruct the image with optimization-based algorithms.8–10

CS-SFDI replaces the camera with a single-pixel photo detector and collects the measurement
matrix of human tissue to reconstruct and demodulate images.

Theoretically, CS-SFDI method passively drops some useful information thus result in high
errors in reconstructing images. To improve CS-SFDI method, CS-based parameter recovery
algorithm11 is proposed to compress the demodulated images before image reconstruction.
Unfortunately, in some cases of clinical data with high heterogeneity, CS-based algorithm often
produces results that are not distinguishable under low sampling rate.

However, compared with traditional optical imaging technology, single-pixel imaging still
has the following two disadvantages: on the one hand, the image quality is far from the level of
the current traditional optical imaging system, the image resolution, and the signal-to-noise ratio
is low. On the other hand, compression sensing algorithm often requires a lot of computing time
and is difficult to reconstruct the details of complex objects. Consequently, most studies in the
field of CS-SFDI only focus on collecting small-scaled images.

In this work, we examine the emerging role of single-pixel imaging based on Fourier spec-
trum in the context of the SFDI image acquisition (FSI-SFDI). First, we replace the binary basis
patterns with the grayscale harmonic sinusoid patterns for the single-pixel imaging system,
which is proved in our experiments to improve the estimation accuracy of optical coefficients.
Second, the proposed method takes full advantage of the sparseness of natural signals in the
Fourier domain and recovers higher resolution images with fewer samples. Given the prior
knowledge that the main information of an image is concentrated in the low frequency part
of the Fourier spectrum,12,13 our method can reconstruct the large-size image by sampling less
data point of low-frequency information. To acquire the pattern images, we superimpose Fourier
base pattern images on spatial frequency domain images to simulate structured illumination and
compressive detection on tissue surfaces: one tissue with sinusoidal light patterns illuminations
at two frequencies and three different phases7 and another tissue with four-step phase-shifting
sinusoid patterns detection.12 After obtaining the pattern images of tissue using IFFT method,
we use approximate lookup table (LUT) algorithm based on Monte Carlo simulation14 to map
and demodulate optical properties.

We conduct experiments to evaluate our method. Using the APP-SFDI data set for simula-
tion,15,16 the clearer and more distinguishable images of the optical properties can be generated,
and the root mean square error (RMSE) of the optical properties is <5% and SSIM of the optical
properties is >0.7 for a 92% reduction in measurements. Beyond that, keeping the same number
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of samples, high quality and large-size images can be restored with higher time efficiency and the
results of our method are more accurate than that of CS-SFDI. It means that FSI-SFDI can use
less sampling rate in large-size images to obtain optical properties images with higher definition.

2 Approach

2.1 Spatial Frequency Domain Imaging

Many researchers utilized SFDI to measure optical coefficients, such as absorption (μa) and
scattering (μ 0

s) properties.
4 The first step in this process is using illumination of tissue by struc-

tured light to generate modulated images (MI).17,18 MI offers an effective way to acquire the
spatial modulation transfer function of a turbid medium, which can represent the characteristics
of the optical system. After the measurement of optical, we can capture and figure out two spatial
frequency images, for example, a DC image (e.g., 0 mm−1) and an AC image (e.g., 0.2 mm−1),
to determine the diffuse reflectance of the sample. Then, SFDI uses diffusion theory or LUT
based on Monte Carlo simulations14 to extract the optical coefficients from diffuse reflectance
images typically.

There are two main types of components used to collect spatial frequency images. One DMD
projects 0 and 0.2 mm−1 frequency, three-phase spatial structured light to the surface of tissue,
and then, one camera collects MIs of the tissue. The AC amplitudeMacðx; fxÞ and the DC ampli-
tude Mdcðx; fxÞ is solved pixel-by-pixel:

EQ-TARGET;temp:intralink-;e001;116;475Macðx; fxÞ ¼
ffiffiffi
2

p

3
½ðIac1 − Iac2Þ2 þ ðIac2 − Iac3Þ2 þ ðIac3 − Iac1Þ2�1∕2; (1)

EQ-TARGET;temp:intralink-;e002;116;419Mdcðx; fxÞ ¼
1

3
ðIdc1 þ Idc2 þ Idc3Þ; (2)

where Iac1, Iac2, Iac3 are the backscattered light intensity corresponding to the phases
0π; 2∕3π; 4∕3π, with 0.2 mm−1 frequency and Idc1, Idc2, Idc3 are the backscattered light intensity
corresponding with 0 mm−1 frequency, respectively.

The diffuse reflectance of the sample Rdðx; fxÞ can be calculated by measuring a standard
reflector with existing diffuse reflectance as a reference:

EQ-TARGET;temp:intralink-;e003;116;337Rd_acðx; fxÞ ¼
Macðx; fxÞ
Mac;refðx; fxÞ

· Rd_ac;refðfxÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;280Rd_dcðx; fxÞ ¼
Mdcðx; fxÞ
Mdc;refðx; fxÞ

· Rd_dc;refðfxÞ; (4)

whereMac;refðx; fxÞ andMdc;refðx; fxÞ are the AC and DC amplitude of a standard reflector with
known diffuse reflectance.

Finally, we employ the precomputed LUT to map the relationship between Rdðx; fxÞ and
optical properties (μ 0

s and μa) by Monte Carlo algorithm.

2.2 Fourier-Based Single-Pixel Imaging

Many prior works have been devoted to single-pixel imaging that often captures a scene without
a direct line of sight light.12,13 To increase the imaging quality, Fourier-based method for single-
pixel imaging is often adopted. Due to the sparsity of the image in the Fourier domain, our
proposed method adopts two-dimensional (2D) Fourier single-pixel imaging, using simulated
patterns to capture the Fourier spectrum of the scene signal. Therefore, images can be recon-
structed through Fourier inverse transform from Fourier spectrum. 2D Fourier transform19 and
the inverse transform are given as
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EQ-TARGET;temp:intralink-;e005;116;735Cðfx; fyÞ ¼
Z þ∞

−∞

Z þ∞

−∞
Iðx; yÞ exp½−j · 2πðfxxþ fyyÞ�dfx dfy; (5)

EQ-TARGET;temp:intralink-;e006;116;689Iðx; yÞ ¼
Z þ∞

−∞

Z þ∞

−∞
Cðfx; fyÞ exp½j · 2πðfxxþ fyyÞ�dx dy; (6)

where Iðx; yÞ represents 2D image, Cðfx; fyÞ is the Fourier spectrum of 2D image, x; y is the
Cartesian coordinates in the spatial image domain, fx, fy is the Cartesian coordinates in the
Fourier domain, and j is the imaginary unit.

Any 2D image is the result of the linear superposition of a series of Fourier base patterns. The
weight corresponding to each Fourier base pattern is the Fourier coefficient.12 To acquire the
Fourier base patterns for 2D inverse Fourier transform (IFT), we use the existing dataset15 from
APP-SFDI for simulation, superimpose the generated Fourier base pattern on the images, and
obtain the final signals of single pixel detector through simulation computation. After the prior
study,20 the signal detected by a single pixel detector in a simulated environment is the sum of all
the pixel intensities. First, to obtain the Fourier coefficients of the object image, a computer is
used to generate a Fourier base pattern. The Fourier base pattern is a series of cosine distribution
patterns with different spatial frequencies and different initial phases. The Fourier base pattern
projected on the tissue surface can be formulated as

EQ-TARGET;temp:intralink-;e007;116;509Pðx; y; fx; fy;∅Þ ¼ aþ b · cosð2πfxx∕M þ 2πfyy∕N þ∅Þ; (7)

where a is the average light intensity, b is the contrast, x and y are the rectangular coordinates of
the plane in which the target object is located, M and N are the dimensions of the image, fx and
fy are the spatial frequencies corresponding to the x and y directions, and ∅ is the initial phase.

Therefore, the scattered reflected light D∅ðfx; fyÞ that collected from target object Oðx; yÞ
can be expressed as follows:

EQ-TARGET;temp:intralink-;e008;116;416D∅ðfx; fyÞ ¼
X
x;y

Pðx; y; fx; fy;∅Þ · Oðx; yÞ: (8)

To obtain the Fourier spectrum information of a single point in the image, the most com-
monly used method is the four-step phase-shifting method. Four-step Fourier spectrum acquis-
ition methods are used frequently. 0, 1∕2π, π, and 3∕2π are assigned to the values of ∅,
respectively. Based on the four-step phase-shift algorithm, the Fourier coefficients Cðfx; fyÞ can
be estimated from four values obtained as follows:

EQ-TARGET;temp:intralink-;e009;116;311Cðfx; fyÞ ¼ ðD0ðfx; fyÞ −Dπðfx; fyÞÞ þ
�
Dπ

2
ðfx; fyÞ −D3π

2
ðfx; fyÞ

�
: (9)

Traditionally, as the four-step phase-shift algorithm is adopted, a complex value in a particu-
lar spectrum can be assessed by measuring four projection samples. This means that an M × N
pixel image needs to be captured 4 ×M × N times. Because the Fourier spectrum of the image
is conjugate symmetric, an M × N pixel image only needs to measure 2 ×M × N projection
samples. Previous studies13,21,22 have confirmed that the main information about objects is
concentrated in the lower frequencies of the Fourier spectrum. Therefore, circular acquisition
of low-frequencies is the common procedures for reducing sampling rate. However, discarding
the spectrum of high frequencies introduces the reduction of the details of the image. To combat
this, Wenwen et al. study sparse Fourier single-pixel imaging,20 based on variable-density sparse
sampling patterns. The probability of sampled distribution is formulated as follows:

EQ-TARGET;temp:intralink-;e010;116;145ρðrÞ ¼
�

1 r ≤ R
ð1 − rÞp r > R

; (10)

where p is the polynomial coefficient, R is predefined radius of a circular sample in the low
frequency, and r represents the Fourier frequency. In the experiment, we measure r by the
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Euclidean distance from the center point to other points in the image and is normalized to (0,1).
Figure 1 shows the forms of three sampling matrices at a sampling rate of 10%.

Sparse Fourier single-pixel imaging can reconstruct high-resolution images using CS opti-
mization algorithms. The optimization algorithms solution of the following equation:

EQ-TARGET;temp:intralink-;e011;116;508 arg min kFt − T 0k22 þ λ1ktk1 þ λ2TVðtÞ; (11)

where TV is the total variation operator, λ1, λ1 are the loss weight, and t is the object image to be
reconstructed. The matrix T 0 is the acquired undersampled spectral data.

2.3 Fourier Single-Pixel Imaging-Based SFDI

Previous CS-SFDI methods estimate optical properties in a variety of ways,7,11 which is based on
traditional CS algorithm. However, their method generates optical parameters with limited accu-
racy and fails to produce resolvable images at low sampling rates. To solve this problem, the FSI-
SFDI algorithm is proposed in this paper. FSI-SFDI performs SFDI using Fourier single-pixel
imaging. To acquire the data, the Fourier base patterns are superimposed on dataset image, which
consists of hand images at 0 and 0.2 mm−1 frequency, three-phase spatial structured light. The
following equation shows the modulated patterns:

EQ-TARGET;temp:intralink-;e012;116;330Fðx; y; fx; fy; fk;∅1;∅2Þ ¼ cosð2πfk þ∅1Þ · Pðx; y; fx; fy;∅2Þ; (12)

where fk is the frequency of SFDI,∅1 is the phase of SFDI, and Pðx; y; fx; fy;∅2Þ is the Fourier
base pattern. The scattered reflected light C∅1;∅2ðfx; fy; fkÞ is collected from target object
Oðx; yÞ, and can be expressed as follows:

EQ-TARGET;temp:intralink-;e013;116;260D∅1;∅2ðfx; fy; fkÞ ¼
X
x;y

Fðx; y; fx; fy; fk;∅1;∅2Þ · Oðx; yÞ: (13)

According to Eq. (9), we can compute the Fourier spectrum of the image at a certain spatial
frequency and phase. With the Fourier spectrum of the tissues, we utilize IFT to reconstruct the
MIs of SFDI. Figure 2 shows an example of image simulation and reconstruction in FSI-SFDI.
Because of the large number of patterns required for Fourier single-pixel imaging, it will cost
a lot of time and space. To speed up imaging and computing process, a proper solution is to
compress the sampling of tissue information. We can take full advantage of the fact that more
of the image energy is concentrated in the low frequency of the Fourier spectrum. So we can use
circular low frequency sampling, variable density random undersampling, and so on. In the
experimental section, we present the efficiency comparison of these sampling methods.

As shown in Fig. 3, to measure the optical characteristic, we reconstruct the two spatial
frequencies and three-phases MIs and calculate AC and DC by Eqs. (1) and (2). Finally, the
optical properties: absorption (μa) and scattering (μ 0

s) properties, can be calculated according
to the LUT algorithm or diffusion theory.

Fig. 1 Three sample schemes: (a) circular sampling scheme, (b) random sampling scheme, and
(c) variable-density random sampling scheme.
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2.4 Data Simulation

To better verify the effectiveness of the algorithm, we first use the data set to simulate the data on
the computer. The data set consists of multiple frequency and phase dorsal patterns. Among the
current open resources, APP-SFDI has provided SFDI software and images that are convenient
for analysis and testing.15 The CS parameter reconstruction algorithm has used this data for
experiments and analysis. Therefore, testing on this dataset is reasonable for comparing the per-
formance of the algorithms.

2.5 Error Metrics

To verify the error of the results, we choose RMSE for evaluation metrics of our method.
Calculation equation of RMSE is obtained as

EQ-TARGET;temp:intralink-;e014;116;137RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðA − BÞ2

N

s
� 100; (14)

where A and B are the pixel values of the estimated result and the original image and N is the
number of the images.

Fig. 3 Pipeline of SFDI algorithm. After FSI algorithm which is used to reconstruct multiple
modulation images with different phases and frequencies, SFDI can be used to recover optical
coefficients.

Fig. 2 Illustration of image acquisition and reconstruction. The simulated structured pattern
images are superimposed on the dataset of SFDI. Single pixel imaging signal is obtained through
calculation, which is used to simulate the signal collected by the single pixel detector. After col-
lecting the signal, an MI at a certain spatial frequency and phase can be obtained from the signal
by IFT method.
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In addition, to evaluate the accuracy of our results, we adopt structural similarity index to
measure the similarity of the two images. Calculation equation of SSIM is

EQ-TARGET;temp:intralink-;e015;116;711SSIM ¼ ð2 × A × Bþ C1Þð2 × σAB þ C2Þ
ðA2 þ B2 þ C1Þðσ2A þ σ2B þ C2Þ

; (15)

where σA and σB are the standard deviation of the estimated result and the original image. σAB is
the covariance of the estimated result and the original image. C1 and C2 are the constant terms,
and calculation equation of C1 and C2 is

EQ-TARGET;temp:intralink-;e016;116;629

�
C1 ¼ ðK1 × LÞ2
C2 ¼ ðK2 × LÞ2 ; (16)

where K1 and K2 are the adjustable constant terms. In general, K1 is equal to 0.01 and K2 is
equal to 0.03. L is the data range of the input gray image, where L is 255 for uint8 encoding
in our experiments.

3 Results

The simulation data use the data set in the APP-SDFI source file, and the source file includes
multiple phase and frequency hand modulated illumination images. To compare with the existing
methods, this paper uses three phases and two frequencies of dataset as simulations, which are
0π, 1∕3π, 2∕3π, and 0 and 2 mm−1, respectively. And the images are resized to 256 × 256 pixels.

Fig. 4 Restoration results of different frequencies and the optical characteristic at a sampling rate
of 10%. As presented in this figure, uniform density random undersampling fails to reconstruct
resolvable images at low sampling rate. Using variable density random undersampling is better
than uniform density random undersampling but cannot significantly improve the accuracy of clini-
cal data with high heterogeneity. On the contrary, it increases the error of the MI when f k is equal to
2 mm−1. Circular sampling scheme helps to reconstruct better details with less visible errors than
other sampling methods when compared with full sampling.
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3.1 Comparison of Different Sampling Schemes

Since different sampling methods introduce different impacts on the reconstructed MI. To com-
pare the differences between sample schemes, we use different sampling methods at 10% sam-
pling rate to reconstruct the MIs and then generate the optical characteristic map. Three types of
sampling schemes and two reconstruction methods have been used to restore the object infor-
mation. The sampling rate is the ratio of the number of acquisition patterns to the number of
image pixels for the convenience of comparison. The results of FSI-SFDI are shown in Fig. 4.
Although the sparse Fourier single-pixel imaging has been proved to be effective in recovering
the detail information of objects, it is not efficient enough for the situation where the image of
skin tissue is flatter. Moreover, the reconstructed images by sparse Fourier single-pixel imaging
drop some details of the modulated light, while using circular sampling is more effective to
recover better details that are close to the original image.

3.2 High Efficient Reconstruction Performance under Different Sampling
Rates

It is very important to obtain more accurate reconstruction results with fewer details losses for
exact optical parameter estimation. We have comprehensively compared the performance of our
method with that of the CS-SFDI method at different pattern number (i.e., 5242 to 26,214),
corresponding to different sampling rates (i.e., 8% to 40%). Figure 5 shows the optical character-
istic diagram with pattern number of 5242 to 26,214 by FSI-SFDI and CS-SFDI algorithms.
Obviously, at low sampling rate, the image reconstructed by FSI-SFDI method has clear edges
and less information loss. At high sampling rate, this method is slightly better than the
competitive method. The most interesting aspect of this graph is at 5242 patterns. FSI-SFDI

Fig. 5 The SFDI based on Fourier single-pixel imaging recovery algorithm image panel by 5242 to
26,214 patterns. Pictures of hand are compressed into 256 × 256 pixels.
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algorithm can clearly preserve the outline of the hand, while the result of CS-SFDI which does
not meet the needs of clinical scenarios cannot be distinguished. With lower sampling rate, the
FSI-SFDI method is also capable of recovering good details that are clearer than CS-SFDI
method.

According to Fig. 5, the lower sampling rate results in higher reconstruction errors of the MIs,
leading to larger estimation error of the optical properties. To evaluate the performance of our
method, we measure and compare the RMSE between the estimated optical properties and the
original with CS-SFDI method. As shown in Fig. 6, our method achieves much lower errors than
CS-SFDI in terms of μa and μ 0

s, especially when we use a low sampling rate. The RMSE of FSI-
SFDI is <3% (μa) and <5% (μ 0

s) and the SSIM of FSI-SFDI is >0.9 (μa) and >0.8 (μ 0
s),

respectively.
To evaluate the performance of FSI-SFDI on large-size images, we use an image with 512 ×

512 resolution as the example for calculation and analysis. As the number of modes increases,
the computational cost increases. We use the same pattern number 5242 to 26,214 for testing. In
qualitative evaluation, as shown in Fig. 7, FSI-SFDI recovers favorable optical characteristic
map with few details missed even at 5242 patterns when compared with the results of 100%
sampling rate. Quantitatively, we measure the RMSE of the estimated optical properties μa and
μ 0
s under different sampling rate. From the curve of Fig. 8, we can observe that our FSI-SFDI

primely recovers the optical properties while keeping the RMSE under the upper bound of 4.5%,
and the SSIM > 0.65.

To investigate the ability of FSI-SFDI algorithm in estimating optical properties, we utilize
homogeneous two-tone tissue-mimicking phantoms. The experiment settings and data of phan-
tom measurement are kept same as Mellors et al.11 Specifically, phantom measurements can be
simulated using 0 and 0.2 mm−1 spatial frequencies images to generate the MI. These simulated
data sets have 256 × 256 resolution, and there are three different optical property anomalies.
Figure 9 shows the final anomaly varying and result of the phantom measurements. From the

Fig. 6 Results comparison of optical properties estimation. (a), (c) The RMSE and SSIM metrics
results of μa with pattern numbers range from 5242 to 26,214. (b), (d) The RMSE and SSIMmetrics
results of μ 0

s with pattern numbers range from 5242 to 26,214. Pictures of hand are resized into
256 × 256 pixels. Comparison between the original data and reconstructed images for increasing
pattern numbers.
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data in Fig. 10, it is apparent that when the data are reduced by 92%, RMSE is lower than 2.5%,
and SSIM is greater than 0.9. As can be seen from the histogram in Fig. 11, under the low
sampling rate, the results of FSI-SFDI still have relatively high similarity.

3.3 Memory and Time Efficiency with Large Resolutions

To compare the efficiency of different reconstruction algorithms, we also evaluate the time effi-
ciency and memory cost of our method when restoring the image signal with 2% sampling rate at
128 × 128 resolution and 256 × 256 resolution. The experiment is conducted on a computer

Fig. 8 (a) FSI-SFDI RMSE results of data set compressed into 512 × 512 pixels. (b) FSI-SFDI
SSIM results of data set compressed into 512 × 512 pixels. RMSE for each optical property map
obtained using the FSI-SFDI algorithm, compared with the noncompression-based ground truth
results.

Fig. 9 Result of homogeneous two-tone tissue-mimicking phantoms. Comparison between the
original data and reconstructed images for increasing pattern numbers.

Fig. 7 The SFDI based on Fourier single-pixel imaging recovery algorithm image panel with pat-
tern numbers range from 5242 to 26,214. Pictures of hand are compressed into 512 × 512 pixels.
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server with an Intel Xeon(R) Gold-6124M 2.60 GHz CPU and 128 GB RAM. Table 1 presents
the comparison results of memory required and the computation time between two image recon-
struction methods. For an image with 256 × 256 resolution, the CS method takes more than
67,100 ms, while the IFFT method takes only 1.65 ms. For space cost, the CS method requires
more than 7000 MB, and IFFT requires 175 MB to reconstruct the image signal.

In Fig. 12, we present the memory cost required by the two methods during the computation.
Analysis of the figure shows that CS-SFDI method requires the similar amount of computer
memory as our FSI-SFDI method when the image resolution is no more than 64 × 64.

Fig. 11 Histogram results of homogeneous two-tone tissue-mimicking phantoms. (a)–(c) Histo-
gram results of μa with pattern numbers range from 5242 to 26,214. (c)–(e) Histogram results of
μ 0
s with pattern numbers range from 5242 to 26,214.

Fig. 10 FSI-SFDI RMSE and SSIM results of homogeneous two-tone tissue-mimicking phantoms.
(a) RMSE for each optical property map obtained using the FSI-SFDI algorithm, and (b) SSIM for
each optical property map obtained using the FSI-SFDI algorithm, compared with the noncom-
pression-based ground truth results.
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When dealing with higher image resolution, CS-SFDI method requires more RAM memory
(more than 10 times memory cost of FSI-SFDI) to perform optimization task. In other words,
our FSI-SFDI method is technically superior to CS-SFDI in memory cost when applied in
cheaper devices, e.g., laptop computer, cell phone, etc.

4 Discussion

This work presents a method that uses Fourier single pixel imaging to reconstruct the pattern
image based on SFDI theory. We superimpose the two-frequency, three-phase MI onto the image
of the spatial frequency domain to simulate the detection of Fourier single pixel imaging on the
tissue. Then we reconstruct the optical characteristic map by based method, which effectively
improves the accuracy and reduces the time and memory cost compared with previous CS
methods.

However, using two-frequencies and three-phase modulated light to acquire six images is still
time-consuming. Existing single snapshot algorithms23–25 proposed for reducing the time of
acquisition, e.g., one-frequency and one-phase, but downgrade the result accuracies heavily.
In the future, it will be possible to consider employing machine learning methods and single
snapshot algorithm to reconstruct the optical characteristic map with less patterns.26–28 Moreover,
in practical terms, DMD projects grayscale images is slower than binary patterns, further increas-
ing the time cost for collecting information. To alleviate this burden, a programmable DMD oper-
ating in binary modes can be used to generate binary (stripe) patterns and then convert the patterns
to grayscale (fringe) patterns by employing the defocusing techniques or the spatial low-pass
filtering, and the research work of Zhang et al. has suggested the feasibility of path.

Another weakness of our methods is that the high-frequency details are not very clear when
the method is dealing with extremely low sampling rate. As Fig. 13 shows, the maximum error is
greater than 50% in the area around the edge of the hand due to the loss of high frequency
information and the errors in surface curvature. A potential solution is to introduce better and

Fig. 12 Comparison of memory for CS-SFDI and FSI-SFDI from different data points.

Table 1 Comparison of speed andmemory cost for the inversion from
Fourier spectrum to images.

Data points Reconstruction method Memory (MB) Time (ms)

128 × 128 CS 3709.22 17,655

IFFT 170.43 1.43

256 × 256 CS 7090.22 67,100

IFFT 175.59 1.65
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flexible sampling method, which can not only be used to recover the details from low-frequency
domain but also high-frequency details. Wenwen et al.20 proposed variable density sampling
matrix and CS algorithm to achieve super-resolution imaging. Although it has improved the
accuracy of the image with more accurate details, the computational efficiency is decreased and
it does not apply to MIs. It may in fact demonstrate even greater potency and will be considered
in future research.

5 Conclusion

In this study, we propose an effective approach for optical parameters estimation via single pixel
detector. Our method achieves single-pixel SFDI and achieves the state-of-the art performance.
The scope of this contribution is introducing Fourier single pixel imaging method to SFDI (FSI-
SFDI), which is more advantageous to generate large size optical characteristic than previous
methods. Our system replaces hyperspectral imaging cameras with cheaper single-pixel detector,
which is more effective without clear performance reduction. The proposed takes advantage of
the sparsity of natural signals in the frequency domain, and collects spectrum data using Fourier
single-pixel imaging instead of the CS method, which reduces the computation time and equip-
ment cost for real deployment in a clinical environment.
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