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ABSTRACT. Significance: Breast conservation therapy is the preferred technique for treating
primary breast cancers. However, breast tumor margins are hard to determine
as tumor borders are often ill-defined. As such, there exists a need for a clinically
compatible tumor margin detection system.

Aim: A combined time-resolved fluorescence and diffuse reflectance (TRF-DR)
system has been developed to determine the optical properties of breast tissue.
This study aims to improve tissue classification to aid in surgical decision making.

Approach: Normal and tumor breast tissue were collected from 80 patients with
invasive ductal carcinoma and measured in the optical system. Optical parameters
were extracted, and the tissue underwent histopathological examination. In total,
761 adipose, 77 fibroglandular, and 347 tumor spectra were analyzed. Principal
component analysis and decision tree modeling were performed using only TRF
optical parameters, only DR optical parameters, and using the combined datasets.

Results: The classification modeling using TRF data alone resulted in a tumor
margin detection sensitivity of 72.3% and specificity of 88.3%. Prediction modeling
using DR data alone resulted in greater sensitivity and specificity of 80.4% and
94.0%, respectively. Combining both datasets resulted in the improved sensitivity
and specificity of 85.6% and 95.3%, respectively. While both sensitivity and speci-
ficity improved with the combined modeling, further study of fibroglandular tissue
could result in improved classification.

Conclusion: The combined TRF-DR system showed greater tissue classification
capability than either technique alone. Further work studying more fibroglandular
tissue and tissue of mixed composition would develop this system for intraoperative
use for tumor margin detection.
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1 Introduction
Breast conservation therapy (BCT) has been the preferable surgical treatment for primary breast
cancer for over 30 years.1,2 BCT involves patients undergoing tumor resection to the tumor with a
rim of surrounding normal breast tissue and is typically followed by radiation therapy to eradicate
residual microscopic disease.3 Negative tumor margins are essential in controlling the local recur-
rence of disease, and the success of BCT is dependent on tumor-free margins.4,5

Conventionally, the gold standard in breast margin assessment is microscopic pathologic
examination of the excised tissue.6 The tissue is inked to mark orientation, formalin-fixed,
paraffin-embedded, hematoxylin and eosin (H&E) stained, and then evaluated by a pathologist.
This requires considerable time and labour to be completed. In addition, breast tumor borders
are often ill-defined, indistinct, and/or irregularly shaped.5 As a result of these challenges,
many studies report 7.8% to 50% re-excision rates in patients that underwent BCT.7–10 With no
internationally agreed-upon standard margin width set for BCT11,12 and great variability in
re-excision rates between surgeons, an intraoperative tool for margin assessment could allow
for greater control of disease by providing greater information prior to pathologic examination,
reducing positive margins, minimizing the need for reoperation, and morbidity.

Various techniques and commercial devices have been developed for intraoperative margin
assessment (IMA), including techniques that utilize electrical properties of tissue, molecular im-
aging, optical imaging, and optical spectroscopy. Each technique has its own clinical applications
and limitations. Techniques using electrical properties of tissue, such as bioimpedance, still suffer
from diagnostic capability. MarginProbe® (Dilon Technologies, Newport News, Virginia, United
States),13 the only commercial device with Food and Drug Administration (FDA) approval for
breast IMA, reported sensitivity, specificity, and a false-positive rate in patients of 75.2%, 46.4%,
and 53.6%, respectively.14 Further studies, notably LeeVan et al. concluded MarginProbe® did
not significantly reduce re-excision rates.15 Other bioimpedance devices that have not yet been
approved for clinical use show promise with greater diagnostic capability, such as ClearEdge™
(LS Biopath, Mountain View, California, United States), where a phase 2 device has shown a
sensitivity and specificity of 87.3% and 75.6%, respectively.16 However, this device is heavily
dependent on a baseline measurement of “normal” breast tissue near the tumor prior to the exami-
nation of suspected tissue. This reliance may be an issue if the tissue used for this initial meas-
urement is misidentified. Other IMA devices have been developed that may interrupt existing
clinical processes. One prominent commercial device utilizing molecular imaging for breast
cancer IMA is the LUM imaging system (Lumicell Inc., Newton, Massachusetts, United
States). This device utilizes a novel fluorescent agent, LUM015, which cannot be used in con-
junction with isosulfan blue, a dye often used in sentinel node mapping, a common medical
procedure to determine whether cancer presence in the body includes the lymph nodes.17,18

The intelligent knife19 or iKnife (Medimass, Budapest, Hungary) is a rapid evaporative ionization
mass spectrometry tool that has been tested in breast IMA, reporting a sensitivity of 90.9% and
specificity of 98.8% in 260 specimens analyzed using their established classification model.20

However, this technique is inherently destructive as an electrosurgical unit or an infrared laser
is used to thermally ablate tissue resulting in the emission of “surgical smoke.” As such, the
interrogated tissue cannot undergo histology for validation.

The only commercial optical imaging device currently approved by the FDA as an investiga-
tional device for breast IMA called the OTIS 2.0 (Perimeter Medical Imaging AI Inc., Toronto,
Ontario, Canada). A major advantage of this imaging technique is that it is capable of image
resolutions on the micron-scale, which is comparable to histological examination.18 The pilot
study conducted by Munro et al. reported an average image acquisition time of 18.3� 5.3 min,
with a maximum of 27 min.21 This is comparable to conventional frozen section histological
examinations, taking approximate 20 to 30 min,17 so this device might not reduce the length
of a surgical procedure. In addition, it has been reported that the interpretation of optical coher-
ence tomography images suffers from reader variability. A study by Ha et al. found that surgeons
reported the lowest sensitivity (76%), specificity (84%), and accuracy (0.82) of all clinicians in
the study.22 As such, its clinical implementation is disputed.
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Raman spectroscopy is an optical spectroscopy technique being investigated for breast
cancer IMA. Haka et al. measured ex vivo breast specimens and were able to distinguish cancer-
ous from benign tissue with a sensitivity of 83% and specificity of 93%.23 A major limitation of
Raman spectroscopy is the probability of the interaction, which is significantly lower than other
interactions. Raman scatter cross-sections can be 12 to 14 orders of magnitude lower than that of
fluorescence.24 As a result, fluorescence background must be eliminated from the measured
spectra as the fluorescence intensity may be several orders of magnitude greater than Raman
signals in biological tissue.25 In addition, fluorescence emission occurs over a longer period
(nanoseconds) than Raman scattering (picoseconds), adding to the noise that may make Raman
spectroscopy challenging.25 Although technologies have been and continue to be developed to
tackle fluorescence suppression, this often comes with added cost, such as using ultrafast pulsed
lasers or increased acquisition time.25

Time-resolved fluorescence (TRF) and diffuse reflectance (DR) spectroscopy are optical
techniques that can be used to analyze and classify tissue. TRF utilizes a pulse of light to measure
the fluorescence of the stimulated tissue over time.26 The fluorescence intensity and lifetimes of
endogenous fluorophores, such as collagen, nicotinamide adenine dinucleotide (NADH), and
flavin adenine dinucleotide (FAD), can be extracted and used in tissue analysis.27 DR spectros-
copy utilizes a broadband light source to stimulate tissue, and various detection fibers arranged in
different geometries can be used to observe the reflectance of the light.28 The reflectance can be
used to extract the absorption and reduced scattering coefficients at measurement wavelengths to
analyze tissue.27

Various TRF studies have found differences in the fluorescence intensities and lifetimes of
collagen, NADH, and FAD between cancerous and normal breast tissue.29–33 Similarly, various
DR studies have utilized the spectral reflectance, absorption coefficient, and reduced scattering
coefficient to analyze breast tissue.34–39 Several studies have tested the capabilities of combined
fluorescence and reflectance systems for breast tissue classification, with sensitivities ranging
from 70% to 100% and specificities ranging from 75% to 96%;40–43 however, each study
involved samples collected from a maximum of 45 cancer patients.

The biological emission and reflectance (BEAR) system combines TRF-DR to investigate
the classification capabilities of TRF alone, DR alone, and TRF-DR combined. The goal of this
work is to investigate the possibility of improving tissue classification modeling using multiple
optical techniques and collecting a greater number of spectra from a greater number of patients.
The development of a technique that allows for rapid margin assessment can improve confidence
in the operating room until pathological assessment can be performed. If successful, this
non-destructive investigation technique and system could complement existing clinical processes
and reduce both the time required for surgery and re-excision rates.

2 Materials and Methods

2.1 Samples and Histological Data
Normal and tumor breast samples were collected from 80 patients with invasive ductal carcinoma
following lumpectomy from St. Joseph’s Hospital, Hamilton, Ontario, Canada [Hamilton
Integrated Research Ethics Board (Project No. 10-3393)]. Tumor samples were collected near
the center of the tumor; whereas, normal samples were collected from the exterior of the excised
tissue. Samples were frozen and stored at −80°C. A study by Shalaby et al.) showed that freezing
and thawing normal and tumor breast tissue did not result in significant differences in optical
properties.27 Prior to measurement, samples were thawed and trimmed to fill a sample holder
with a 12.7 mm diameter and 1 mm deep cylindrical sample holder. The holders are covered on
both sides using optically transparent ultralene film to hold the samples in place and flatten the
tissue surface.

After measurement, samples were prepared for histological analysis. Samples were fixed in
formalin, alcohol washed, and embedded in paraffin to form tissue blocks. Tissue blocks were
sectioned and mounted onto glass slides for H&E staining. Following staining, the glass slides
were digitized and registered with optical raster scans to quantify 1 mm × 1 mm pixel divisions.
Each pixel was evaluated by a pathologist to classify the tissue composition as percent tumor,
fibroglandular, and/or adipose.
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2.2 Instrumentation
Mounted samples were placed in the BEAR system for measurement.44 This combined system
uses one 3 mm diameter custom probe, as shown in Fig. 1, to make spot measurements. The
probe was positioned ∼1 mm from the surface of the tissue for each sample measured. At the
center of the probe is a 400 μm diameter fiber used for TRF excitation using a 355 nm Nd:YAG
laser (PNV-M02510-130, Teem Photonics, France) and detection. An acousto-optical tunable
filter (TEAF5-0.36-0.52-S-MSD, Brimrose, United States) is used to measure fluorescence
wavelengths from 380 to 570 nm in increments of 5 nm. The laser is triggered to send 11 pulses
per wavelength with a power of ∼3 mW at the tissue surface. Fluorescence is measured using a
photomultiplier tube (C5594-12, Hamamatsu Photonics, Hamamatsu City, Japan) biased to
2000 V. The output was then sampled using a digitizer (ADQ7DC, 14 bit, 10 GS/s, 2.5 GHz
bandwidth, SP Devices, Linköping, Sweden). The laser is pulsed to make 11 measurements
per spot.

The probe also contains a 200 μm diameter fiber used for DR excitation using a broadband
Xenon lamp (ASB-XE-175BF, Spectral Products, Putnam, Connecticut, United States) as well as
multiple 200 μm diameter fibers used for reflectance detection. These DR detection fibers are
bundled such that there are three detection bundles 0.32 mm, 0.64 mm, and 1.5 mm from the
DR excitation source fiber. Each bundle is connected to a separate spectrometer (BW-UVIS,
600 g/mm, 50 μm slit, StellarNet, United States) to record reflectance.

Samples were placed on an x-y linear stage (XLS-1-80-1250, Xeryon, Leuven, Belgium) to
translate the samples for raster scanning. Samples were translated in 1 mm × 1 mm step sizes
and a spot measurement was performed at each location. Figure 2 shows a photograph of a
sample and its corresponding histology slide with grids overlaid depicting the raster scan.
An averaged spectrum for one of the spot measurements and the corresponding region in the
histology image is shown below. Raster scanning enabled rapid measurement of the entire sample
surface, allowing for a greater number of spectra to be collected in a shorter time period. All
components were connected to a computer to automatically control the timing and execution of
sample excitation, measurement, stage translation, and recording.

Each spot measurement takes approximately 1 s. The measurement time increases during
raster scanning as spectra from each spot need to be saved and the translation stage requires time
to move to the next position. In addition, the acquisition software performs coarse analysis to
generate live-time data during the scan. As such, the time for each spot measurement increases to
approximately 5 s during raster scanning. The speed of the imaging is mostly dependent on the
step size of the raster scan. For a 13 mm × 13 mm area raster scanned with 1 mm × 1 mm step
sizes, the measurement time is approximately 15 min.

Fig. 1 Geometry of the 3 mm diameter measurement probe containing a 400 μm diameter TRF
excitation and collection fiber, a 200 μm DR excitation fiber, and three detection fiber bundles,
0.32 mm, 0.64 mm, and 1.5 mm from the DR excitation fiber.
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2.3 Data Processing and Analysis
Following measurement, the measured signal at each wavelength was averaged for the 11 laser
pulses. Custom MATLAB (v 9.12; MathWorks, Natick, Massachusetts, United States) code
was developed to fit the average spectra to extract the fluorescence intensity and lifetime
of biomolecules of interest. The biomolecules of interest and their emission wavelengths are
reported in Table 1. Fluorescence intensities of all emission wavelengths for each biomolecule
were averaged and then normalized to the NADH intensity at 460 nm, the mean emission
wavelength of NADH for each pixel. As such, the reported fluorescence intensities are
collagen/NADH and FAD/NADH ratios. This normalization accounts for slight variations
in sample to detector distance between measurements. In total, five TRF parameters were
quantified: collagen/NADH intensity, FAD/NADH intensity, collagen lifetime, NADH life-
time, and FAD lifetime.

Table 1 Biomolecules of interest and emission wavelengths with
355 nm excitation.

Biomolecule Emission wavelengths (355 nm excitation)

Collagen 380 to 440 nm33,45,46

NADH 450 to 500 nm45,46

FAD 520 to 570 nm45–47

Fig. 2 Photograph of the sample (a) and histology slide (b) of sample 11T. Grid overlays depict
raster scan locations of each spot measurement. The averaged signal for some wavelengths of
interest (400 nm, 460 nm, and 540 nm) for spot x ¼ 4, y ¼ 8 (c) and its corresponding histology
image used for tissue classification (d) are also shown.
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A sample filled with de-ionized water was measured as background and subtracted from
reflectance measurements collected from the second DR detection fiber bundle (0.64 mm).
The reflectance data were then normalized to a 99% DR standard (Labsphere Inc., North
Sutton, New Hampshire, United States). Optical phantoms made of India Ink (Higgins Ink,
Leeds, Massachusetts United States) and 1 μm-diameter polystyrene microspheres (Polysciences,
Warrington, Pennsylvania, United States) were measured, and the reflectance data were used to
create a look-up table for the extraction of the absorption coefficient, μa, and reduced scattering
coefficient, μ 0

s, following the methods outlined by Le et al.46 This look-up table allowed for the μa
and μ 0

s at each wavelength to be extracted using the measured reflectance of each measurement.
In total, eight DR parameters were quantified: normalized reflectance at 520 nm, normalized
reflectance at 560 nm, μa at 540 nm, μa at 560 nm, μa at 576 nm, μ 0

s at 540 nm, μ 0
s at

560 nm, and μ 0
s at 576 nm. Greater detail regarding the selection of these parameters is outlined

in Dao et al.44

Multivariate analysis was performed using Orange software (v 3.32)48 using extracted
optical parameters from pixels classified as 100% tumor, fibroglandular, or adipose. In total,
761 adipose, 77 fibroglandular, and 347 tumor spectra were analyzed from 80 patients. Principal
component analysis (PCA) was performed on three datasets: TRF parameters only, DR param-
eters only, and combined TRF and DR parameters. The number of principal components (PCs)
was increased until it covered at least 98% of the variance in each dataset. There were four PCs
used for the TRF and DR datasets and eight PCs in the combined dataset. The PCA loadings are
included in the Supplementary Material. Decision tree modeling was also performed using
Orange software. Classification was non-binary. The decision tree model classified tissue as
adipose, fibroglandular, or adipose. The classifier was set to include a minimum number of
three instances in leaves, not to split subsets smaller than five, and to stop when the majority
reaches 95%. Tissue classification was performed using “leave-one-patient-out” cross-valida-
tion where the data from all but one patient is modeled and the data from one patient is tested
and scored using this model. This process is then repeated for all patients in this study.
Following testing, the receiver operating characteristic (ROC) curve was generated using the
predictions from all folds.

To determine whether modeling with combined optical parameters improved tumor classi-
fication compared to either technique alone, McNemar-Bowker tests were conducted. The
classification of the tumor pixels were compared between modeling using just TRF parameters
and modeling using the combined TRF-DR parameters. Similarly, a second test was conducted to
compare classification of tumor pixels using just DR parameters and the combined TRF-DR
parameters.

3 Experimental Results and Discussion

3.1 Time-Resolved Fluorescence Only
The fluorescence intensities of collagen and FAD as well as the fluorescence lifetimes of
collagen, NADH, and FAD were used to create the TRF dataset. Four components were used
to cover 99.2% of the variance in the TRF dataset. The two PCs covering the greatest variance,
PC1 covering 43% of the variance and PC2 covering 34% of the variance, are plotted in Fig. 3.
While the PCA showed some separation between tumor and adipose tissue in PC1, there is
significant overlap between fibroglandular and the other tissue types. PC2 did not show much
separation between tissue types.

Tissue classification was performed using decision tree modeling with only the TRF param-
eters. The results are shown in Table 2. The ROC curve for tumor classification is displayed in
Fig. 4. The sensitivity, specificity, and area under the ROC curve (AUC) of classifying each tissue
group are reported in Table 3.

Modeling using only TRF parameters proved successful for adipose with a sensitivity of
90.8%, specificity of 77.6%, and AUC of 0.882. Tumor classification had a high specificity
of 88.3%, but lower sensitivity and AUC of 72.3% and 0.842, respectively. TRF parameters did
not classify fibroglandular tissue well, with a very low sensitivity of 14.3%. Therefore, the clas-
sification ability of TRF alone would allow for tissue classification in general but would not
provide greater insight on the normal tissue.
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3.2 Diffuse Reflectance
The normalized reflectance at 520 nm and 560 nm as well as the μa and μ 0

s, at 540, 560, and
576 nm were used to create the DR dataset. Four components were used to cover 98.5% of
the variance in the DR dataset. The two PCs covering the greatest variance, PC1 covering 59%
of the variance and PC2 covering 32% of the variance, are plotted in Fig. 5. The PCA using

Fig. 3 Results of PCA on TRF dataset. PC1 and PC2 are plotted for adipose, fibroglandular, and
tumor tissue.

Fig. 4 ROC for tumor classification using TRF dataset.

Table 2 Tissue classification using decision tree modeling with TRF
parameters only.

Predicted

Adipose Fibroglandular Tumor

Actual Adipose 691 15 55

Fibroglandular 23 11 43

Tumor 72 24 251
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DR parameters showed greater clustering of adipose and tumor samples; however, the fibro-
glandular tissue showed greater variability within the group. PC1 showed greater separation of
tissue groups than PC2, with PC 2 showing very little difference between tumor and adipose.

Tissue classification was performed using decision tree modeling with only the DR param-
eters. The results are shown in Table 4. Figure 6 shows the ROC curve for tumor classification.
The sensitivity, specificity, and AUC of classifying each tissue group are reported in Table 5.
Modeling using DR parameters greatly improved the classification ability for all tissue types
when compared to TRF modeling. The greatest improvement was the fibroglandular sensitivity
increasing from 14.3% to 63.6%. Better classification of fibroglandular tissue resulted in
significantly fewer incorrect classifications of tumor, improving its sensitivity as well. As such,
DR parameters are shown to be more effective at tissue classification than TRF parameters.

Fig. 5 Results of PCA on DR dataset. PC1 and PC2 are plotted for adipose, fibroglandular, and
tumor tissue.

Table 3 Sensitivity, specificity, and AUC of classification of adipose,
fibroglandular, and tumor samples using TRF parameters.

Adipose Fibroglandular Tumor

Sensitivity 90.8% 14.3% 72.3%

Specificity 77.6% 96.5% 88.3%

AUC 0.882 0.664 0.842

Table 4 Tissue classification using decision tree modeling with DR
parameters only.

Predicted

Adipose Fibroglandular Tumor

Actual Adipose 729 2 30

Fibroglandular 8 49 20

Tumor 60 8 279
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3.3 Dual Time-Resolved Fluorescence-Diffuse Reflectance
The TRF and DR datasets were combined to form the dual TRF-DR dataset. Eight components
were used to cover 98.9% of the variance in the combined dataset. The two PCs covering the
greatest variance, PC1 covering 42% of the variance and PC2 covering 21% of the variance, are
plotted in Fig. 7. The PCA using both TRF and DR parameters showed similar clustering of
tissue groups, with most of the separation resulting from PC1.

Tissue classification was performed using decision tree modeling with both TRF and DR
parameters. The results are shown in Table 6. The ROC curve for the combined dataset is shown
in Fig. 8. The sensitivity, specificity, and AUC of classifying each tissue group are reported in
Table 7. Modeling using both TRF and DR parameters further improved the classification ability
for all tissue types.

Combining both optical techniques improves tissue classification compared to either tech-
nique alone, as shown in Table 8, summarizing the sensitivity, specificity, and AUC using each
technique. Combining datasets did not improve the sensitivity of fibroglandular classification,
but it did reduce the misclassification of some fibroglandular measurements as tumor from
20 false positives using the DR dataset only to 17 using the combined dataset.

For each tumor pixel in this study (n ¼ 347), the classification for each model was examined
to determine whether combining TRF and DR parameters improved tumor classification. Table 9
shows tumor classification using only TRF parameters and how the classifications changed
following modeling using the combined parameters compare. In 50 instances, tumor pixels that
were incorrectly classified as adipose using modeling with only TRF parameters were then
correctly classified as tumor using the combined dataset. Similarly, 23 of the tumor pixels
incorrectly classified as fibroglandular using TRF parameters were then correctly classified using
the combined parameters. However, for 27 tumor pixels correctly classified using only TRF
parameters, 22 were mis-classified as adipose and 5 as fibroglandular using the combined data-
set. Overall, combining the parameters resulted in 46 more correctly classified pixels, a 13.3%
increase. With a McNemar–Bowker test p-value of <0.01, there is a statistically significant
difference between the two classification models.

Fig. 6 ROC for tumor classification using DR dataset.

Table 5 Sensitivity, specificity, and AUC of classification of adipose,
fibroglandular, and tumor samples using DR parameters.

Adipose Fibroglandular Tumor

Sensitivity 95.8% 63.6% 80.4%

Specificity 84.0% 99.1% 94.0%

AUC 0.905 0.883 0.887
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Similarly, Table 10 shows the changes to tumor classification using only DR parameters
and the combined TRF and DR parameters. In this comparison, 35 more tumor pixels were
correctly classified and 17 more were mis-classified using the combined dataset than just
DR parameters, resulting in an increase of 18 more correct classifications, an increase of 5%.

Fig. 7 Results of PCA on combined TRF-DR dataset. PC-1 and PC-2 are plotted for adipose,
fibroglandular, and tumor tissue.

Fig. 8 ROC for tumor classification using the combined TRF-DR dataset.

Table 6 Tissue classification using decision tree modeling with com-
bined TRF-DR parameters.

Predicted

Adipose Fibroglandular Tumor

Actual Adipose 736 3 22

Fibroglandular 11 49 17

Tumor 44 6 297
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With aMcNemar–Bowker testp-value of 0.02, there is a statistically significant difference between
the two classification models. Both comparisons show that combining the parameters from both
techniques results in improved tumor classification compared to either technique alone.

During sample collection, obtaining normal adipose tissue is much easier than obtaining
normal fibroglandular tissue. As such, sampling of normal breast issue was biased toward
adipose. This resulted in the sample size for adipose to be greater than fibroglandular by nearly
10-fold. In future work, it will be important to collect more fibroglandular tissue for better
classification and to decrease the number of false positives.

Table 8 Summary of sensitivity, specificity, and AUC of positive
margin (tumor) classification using each dataset.

TRF only DR only Combined TRF and DR

Sensitivity 75.2% 82.7% 83.9%

Specificity 90.8% 95.3% 96.2%

AUC 0.842 0.887 0.911

Table 9 Changes to tumor classification using TRF parameters only and combined TRF and DR
parameters.

Tumor classification using combined TRF and
DR parameters

Adipose Fibroglandular Tumor

Tumor classification using
TRF parameters only

Adipose 22 0 50

Fibroglandular 0 1 23

Tumor 22 5 224

Table 10 Changes to tumor classification using TRF parameters only and combined TRF and
DR parameters.

Tumor classification using combined TRF and
DR parameters

Adipose Fibroglandular Tumor

Tumor classification using
DR parameters only

Adipose 28 0 32

Fibroglandular 1 4 3

Tumor 15 2 262

Table 7 Sensitivity and specificity of classification of adipose, fibro-
glandular, and tumor samples using combined TRF andDR parameters.

Adipose Fibroglandular Tumor

Sensitivity 96.7% 63.6% 85.6%

Specificity 87.0% 99.2% 95.3%

AUC 0.923 0.876 0.911
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While this technology does not yet have a tumor detection sensitivity and specificity high
enough to replace microscopic pathologic examination as the gold standard in breast margin
assessment, it does provide information that could give surgeons greater confidence during
surgery. The system could aid in real-time decision making in the operating room, reducing
surgery time, which can improve patient outcome.

4 Conclusion
In this work, it was shown that combining TRF and DR measurements for tissue classification
is more beneficial than using either technique individually. While discrimination of adipose
and tumor tissue is quite successful, the extent to which tumor margins can be detected is
heavily dependent on the ability to classify fibroglandular tissue. Therefore, emphasis is
placed on the need for greater study and sampling of normal fibroglandular tissue. With shown
improvements in both sensitivity and specificity, the BEAR system shows potential as a
surgical tool for intraoperative breast tumor margin detection, complementing existing micro-
scopic pathological examination. Future research will involve modeling spectra from tissue of
mixed composition and testing of fresh specimens in the operating room to confirm the
feasibility and suitability of the BEAR system in a clinical environment. The eigenvectors
of the PCs will also be examined to determine which optical parameters are optimal for tissue
classification. In addition, investigation into the use of software for histology classification
will be explored, which could reduce the burden of analysis from pathologists, improving
clinical implementation.
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