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Abstract. Compressed sensing is the theory and practice of sub-
Nyquist sampling of sparse signals of interest. Perfect reconstruction
may then be possible with significantly fewer than the Nyquist
required number of data. In this work, we consider a video system
where acquisition is performed via framewise pure compressed sens-
ing. The burden of quality video sequence reconstruction falls, then,
solely on the decoder side. We show that effective decoding can be
carried out at the receiver/decoder side in the form of interframe total
variation minimization. Experimental results demonstrate these devel-
opments. © 2013 SPIE and IS&T [DOI: 10.1117/1.JEI.22.2.021012]

1 Introduction
By the Nyquist–Shannon sampling theory, to reconstruct a
signal without error, the sampling rate must be at least
twice the highest frequency of the signal. Compressive sam-
pling (CS), also known as compressed sensing, is an emerg-
ing line of work that suggests sub-Nyquist sampling of
sparse signals of interest.1–3 Rather than collecting an entire
Nyquist ensemble of signal samples, CS can reconstruct
sparse signals from a small number of (random3 or determin-
istic4) linear measurements via convex optimization,5 linear
regression,6,7 or greedy recovery algorithms.8

An example of a CS application that has attracted interest
is the “single-pixel camera” architecture,9 in which a still
image can be produced from significantly fewer captured
measurements than the number of desired/reconstructed
image pixels. A desirable next-step development is compres-
sive video streaming. In the present work, we consider a
video transmission system in which the transmitter/encoder
performs pure direct compressed sensing acquisition without
the benefits of the familiar sophisticated forms of video
encoding. This setup is of interest, for example, in problems
that involve large wireless multimedia networks of primitive
low-complexity, power-limited video sensors. CS is poten-
tially an enabling technology in this context,10 as video
acquisition would require minimal or no computational
power at all, yet transmission bandwidth would still be
greatly reduced. In such a case, the burden of quality
video reconstruction will fall solely on the receiver/decoder
side. In comparison, conventional predictive encoding

schemes [H.26411 or high efficiency video coding
(HEVC)12] are known to offer great transmission bandwidth
savings for targeted video quality levels, but place strong
complexity and power consumption demands on the encoder
side.

The transmission bandwidth and the quality of the recon-
structed CS video are determined by the number of collected
measurements, which based on CS principles should be pro-
portional to the sparsity level of the signal. The challenge of
implementing a well-compressed and well-reconstructed CS-
based video streaming system rests on developing effective
sparse representations and corresponding video recovery
algorithms. Several methods for CS video recovery have
already been proposed, each relying on a different sparse rep-
resentation. An intuitive (JPEG-motivated) approach is to
independently recover each frame using the two-dimensional
discrete cosine transform (2D-DCT)13 or a two-dimensional
discrete wavelet transform (2D-DWT).14 As an improvement
that enhances sparsity by exploiting correlations among suc-
cessive frames, several frames can be jointly recovered under
a three-dimensional DWT (3D-DWT)14 or 2D-DWT applied
on inter-frame difference data.15 To enhance sparse represen-
tation and exploit motion among successive video frames, a
video sequence is divided into key frames and CS frames in
Refs. 16 and 17. Whereas each key frame is reconstructed
individually using a fixed basis (e.g., 2D-DWT or 2D-
DCT), each CS frame is reconstructed conditionally using
an adaptively generated basis from adjacent already recon-
structed key frames. In Refs. 18–20, each frame of a com-
pressed-sensed video sequence is reconstructed iteratively
using adaptively generated Karhunen–Loève transform
(KLT) bases from neighboring frames.

Another approach for compressed-sensed signal recovery
is total-variation (TV) minimization. TV minimization, also
known as TV regularization, has been widely used in the past
as an image denoising algorithm.21,22 Based on the principle
that signals with excessive, likely spurious detail have exces-
sively high TV (that is, the integral of the absolute gradient of
the signal is high), reducing TV of the reconstructed signal
while staying consistent with the collected samples removes
unwanted detail while preserving important information
such as edges. Recently, 2D-TV minimization algorithms
were successfully used in CS image recovery.5,23–27 In
Refs. 28 and 29, a multiframe CS video encoder was
proposed with interframe TV minimization decoding.
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Although promising, such a system requires complex and
expensive spatial-temporal light modulators that make the
technique difficult to be implemented in practice.

In this present work, we propose a system that consists of
a pure framewise CS video encoder in which each video
frame is encoded independently using compressive sensing.
Such a CS video acquisition system can be directly imple-
mented practically with existing CS imaging technology. At
the receiver/decoder, we develop and describe in detail a pro-
cedure by which multiple independently encoded video
frames are jointly recovered successfully via sliding win-
dow–based interframe TV minimization.

The rest of this paper is organized as follows. In Sec. 2,
we briefly review TV-based CS signal recovery principles. In
Sec. 3, the proposed framewise CS video acquisition system
with interframe TV minimization decoding is described in
detail. Some experimental results are presented and exam-
ined in Sec. 4, and a few conclusions are drawn in Sec. 5.

2 Compressive Sampling with TV Minimization
Reconstruction

In this section, we briefly review 2-D and 3-D signal acquis-
ition by CS and recovery using sparse gradient constraints
(TV minimization). If the signal of interest is a 2-D
image X ∈ Rm×n and x ¼ vecðXÞ ∈ RN , N ¼ mn, repre-
sents vectorization of X via column concatenation, then
CS measurements of X are collected in the form of

y ¼ ΦvecðXÞ; (1)

with a linear measurement matrix ΦP×N , P ≪ N. Under the
assumption that images are mostly pixelwise smooth in the
horizontal and vertical pixel directions, it is natural to con-
sider utilizing the sparsity of the spatial gradient of X for CS
image reconstruction.5,23–27 If xi;j denotes the pixel in the i’th
row and j’th column of X, the horizontal and vertical gra-
dients at xi;j are defined, respectively, as

Dh;ij½X� ¼
�
xi;jþ1 − xi;j; j < n;

0; j ¼ n;

and

Dv;ij½X� ¼
�
xiþ1;j − xi;j; i < m;

0; i ¼ m:

The discrete spatial gradient of X at pixel xi;j can be inter-
preted as the 2D vector

Dij½X� ¼
�
Dh;ij½X�
Dv;ij½X�

�
; (2)

and the anisotropic 2D-TV of X is simply the sum of the
magnitudes of this discrete gradient at every pixel,

TV2DðXÞ ≜
X
ij

ðjDh;ij½X�j þ jDv;ij½X�jÞ ¼
X
ij

kDij½X�kl1 :

(3)

To reconstruct X, we can solve the convex program

X̂ ¼ argmin
X̃

TV2DðX̃Þ subject to y ¼ ΦvecðX̃Þ: (4)

However, in practical situations the measurement vector y
may be corrupted by noise. Then, CS acquisition of X
can be formulated as

y ¼ ΦvecðXÞ þ e; (5)

where e is the unknown noise vector bounded by a presum-
ably known power amount kekl2 ≤ ϵ, ϵ > 0. To recover X,
we can use 2D-TV minimization as in Eq. (4) with a relaxed
constraint in the form of

X̂¼ argmin
X̃

TV2DðX̃Þ subject to ky−ΦvecðX̃Þkl2 ≤ ϵ: (6)

Moving on now to the needs of the specific CS video
work presented in this paper, if the underlying signal is a
video signal F ∈ Rm×n×q representing a stack of q successive
frames Ft ∈ Rm×n, t ¼ 1; : : : ; q, then concatenating the col-
umns of all F1; : : : ;Fq results to a length mnq vector
f ¼ vecðFÞ. If fi;j;t denotes the pixel at the ith row and
jth column of frame Ft, then the horizontal, vertical, and
temporal gradient at fi;j;t can be defined, respectively, as

Dh;ij½Ft� ¼
�
fi;jþ1;t − fi;j;t; j < n;
0; j ¼ n;

Dv;ij½Ft� ¼
�
fiþ1;j;t − fi;j;t; i < m;
0; i ¼ m;

and

Dt;ij½Ft� ¼
�
fi;j;tþ1 − fi;j;t; t < q;
fi;j;1 − fi;j;t; t ¼ q:

Correspondingly, the spatial-temporal gradient of F at fi;j;t
can be interpreted as the 3D vector

Dij½Ft� ¼

0
B@

Dh;ij½Ft�
Dv;ij½Ft�
Dt;ij½Ft�

1
CA; (7)

and the anisotropic 3D-TVof F is simply the sum of the mag-
nitudes of this discrete gradient at every pixel:

TV3DðFÞ ≜
X
i;j;t

ðjDh;ij½Ft�j þ jDv;ij½Ft�j þ jDt;ij½Ft�jÞ

¼
X
i;j;t

kDij½Ft�kl1 : (8)

To reconstruct the frame sequence F from noiseless measure-
ments, we can solve the convex program

F̂ ¼ argmin
F̃

TV3DðF̃Þ subject to y ¼ ΦvecðF̃Þ: (9)

The reconstruction of F from noisy measurements can be for-
mulated as the 3D-TV decoding
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F̂ ¼ argmin
F̃

TV3DðF̃Þ subject to ky −ΦvecðF̃Þkl2 ≤ ϵ:

(10)

If the individual frames F1; : : : ;Fq in F are highly time-
correlated, then a pixelwise temporal DCT generally
improves sparsity. As illustrated in Fig. 1, each temporal-
length q (q ¼ 4 for example) vector f i;j ¼
½fi;j;1; : : : ; fi;j;q�T, i ¼ 1; : : : ; m, j ¼ 1; : : : ; n, consisting
of the pixels at spatial position ði; jÞ across q successive
frames, can be represented as

f i;j ¼ ΨDCTci;j; (11)

where ΨDCT is the 1D-DCT basis and ci;j is the transform-
domain coefficient vector. The resulting coefficient matrix
C1 represents the frequency component that remains
unchanged over time (dc) and the subsequent coefficient
matrices Ct, t ¼ 2; : : : ; q, represent frequency components
of increasing time variability. Because each matrix Ct,
t ¼ 1; : : : ; q, is expected to have small TV, they can be
jointly recovered in the form of

Ĉ1; : : : ; Ĉq ¼ argmin
C̃1;: : : ;C̃q

Xq
t¼1

TV2DðC̃tÞ

subject to ky −ΦvecðDCT−1ðC̃1; : : : ; C̃qÞÞkl2 ≤ ϵ;

(12)

where DCT−1ðC̃1; : : : ; C̃qÞ stands for pixelwise inverse 1D-
DCT. Subsequently, the complete frame sequence F can be
reconstructed simply as

F̂ ¼ DCT−1ðĈ1; : : : ; ĈqÞ: (13)

Below, we will refer to this form of interframe CS
reconstruction as TV-DCT decoding.

3 Proposed CS Video System
CS-based signal acquisition with TV-based reconstruction,
as described in Sec. 2, can be applied to video coding. In

Refs. 28 and 29, the video frame sequence is divided into
cubes, and each cube consisting of multiple frames is vec-
torized and compressed-sensed using a large-scale sensing
matrix. At the decoder, each cube of video frames is recov-
ered from the received measurements via 3D-TV decoding as
in Eq. (10) or via TV-DCT decoding as in Eqs. (12) and (13).
However, such a multiframe CS acquisition system requires
simultaneous access—hence, some form of temporal storage
—to the whole cube of frames, which is impractical and,
arguably, defies the core intention of compressed sensing.
In this paper, we propose a practical CS video acquisition
system that performs pure, direct framewise encoding. In
the simple compressive video encoding block diagram
shown in Fig. 2, each frame Ft of size m × n,
t ¼ 1; 2; : : : ; T, is viewed as a vectorized column f t ∈ RN ,
N ¼ mn, t ¼ 1; 2; : : : ; T. CS is performed by projecting f t
onto a P × N random measurement matrix Φt,

yt ¼ Φtf t; t ¼ 1; 2; : : : ; T; (14)

where Φt, t ¼ 1; 2; : : : ; T, is generated by randomly permut-
ing the columns of an order-k, k ≥ N and multiple-of-four,
Walsh–Hadamard (WH) matrix followed by arbitrary selec-
tion of P rows from the k available WH rows (if k > N, only
N arbitrary columns are utilized). This class of WH meas-
urement matrices has the advantage of easy implementation
(antipodal �1 entries), fast transformation, and satisfactory
reconstruction performance, as we will see later on. A richer
class of matrices can be found in Refs. 30 and 31. To quan-
tize the elements of the resulting measurement vector
yt ∈ RP (block Q in Fig. 2), in this work we follow a simple
adaptive quantization approach of two codeword lengths. A
positive threshold η > 0 is chosen such that 1% of the ele-
ments in y1 have magnitude above η. For every measurement
vector yt, t ¼ 1; 2; : : : ; 16-bit uniform scalar quantization is
used for elements with magnitudes larger than η, and 8-bit
uniform scalar quantization is used for the remaining ele-
ments. The resulting quantized values ỹt are then indexed
and transmitted to the decoder.

To reconstruct the independently encoded CS video
frames, a simplistic idea is to recover each frame independ-
ently via 2D-TV decoding by Eq. (6). However, such a

Fig. 1 Illustration of pixelwise temporal discrete cosine transform (DCT) (q ¼ 4).

Fig. 2 Simple framewise compressed sensing (CS) video encoder system with quantization alphabet D.
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decoding scheme does not exploit the interframe similarities
of a video sequence. We propose, instead, to jointly recover
multiple individually encoded CS frames via interframe TV
minimization. As shown in Fig. 3, the proposed interframe
CS video decoder collects and concatenates a group of q
dequantized measurement vectors ŷt ∈ RP, t ¼ 1; : : : ; q,
to form ŷ ∈ RqP. Because each individual dequantized vec-
tor is in the form of ŷt ¼ Φtf t þ et with noise et, ŷ can be
represented as

ŷ ¼ Φ̃f þ e; (15)

where Φ̃ ∈ RðqPÞ×ðqNÞ is the block diagonal matrix

Φ̃ ¼

0
BBBB@

Φ1

Φ2

. .
.

Φq

1
CCCCA; (16)

f is the concatenation of the q vectorized frames

fT ¼ ½fT1 fT2 : : : fTq �; (17)

and e is the concatenation of the noise vectors in the
form of

eT ¼ ½eT1 eT2 : : : eTq �: (18)

The decoder then performs 3D-TV decoding on the q frames
[Fig. 3(a)] by

F̂¼ argmin
F̃

TV3DðF̃Þ subject to kŷ− Φ̃vecðF̃Þkl2
≤ ϵ:

(19)

Although Eq. (19) may be considered a powerful joint
3D-TV recovery procedure for general 2D CS-acquired
video, for highly temporally correlated video frames, better
reconstruction quality may be achieved via TV-temporal-
DCT decoding [Fig. 3(b)] in the form of

Ĉ1; : : : ; Ĉq ¼ argmin
C̃1;: : : ;C̃q

Xq
t¼1

TV2DðC̃tÞ

subject to kŷ − Φ̃vecðDCT−1ðC̃1; : : : ; C̃qÞÞkl2
≤ ϵ:

(20)

F can then be reconstructed simply by

F̂ ¼ DCT−1ðĈ1; : : : ; ĈqÞ: (21)

In Eqs. (20) and (21), we carried out interframe decoding
for each independent group of q frames. To further exploit
interframe similarities and capture local motion among adja-
cent groups of frames, we now propose a sliding-window
TV-DCT decoder. The concept of such a decoder is depicted
in Fig. 4. Initially, the decoder performs TV-DCT decoding
on the first q (q ¼ 4, for example) frames, F1; : : : ;Fq speci-
fied by a decoding window of length q [Fig. 4(a)] using the
block diagonal matrix Φ̃ with diagonal elementsΦ1; : : : ;Φq.
The reconstructed frames are called F̂1;1, F̂2;1, F̂3;1, F̂4;1
[Fig. 4(b)], where F̂t;l represents the l’th reconstruction of
the t’th frame. Then, the decoding window shifts one
frame to the right, performs TV-DCT decoding on
F2; : : : ; Fqþ1 using the matrix Φ̃ with diagonal elements
Φ2; : : : ;Φqþ1, and produces the reconstructed frames F̂2;2,
F̂3;2, F̂4;2, F̂5;1. The decoder continues on with sliding-win-
dow TV-DCT decoding until the last group of frames
FT−qþ1; : : : ; FT is recovered. Final reconstruction of each
frame F̂t is executed by taking the average of all different
decodings in the form of

Fig. 3 (a) Proposed 3-D total variation (TV). (b) TV-DCT CS decoder on individually encoded frames.

Fig. 4 Proposed sliding-window TV-DCT CS decoder system.
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F̂t ¼

8>>>><
>>>>:

1
t

P
t
l¼1 F̂t;l; 1 ≤ t ≤ q;

1
q

Pq
l¼1 F̂t;l; q ≤ t ≤ T − qþ 1;

1
T−tþ1

PT−tþ1
l¼1 F̂t;l; T − qþ 2 ≤ t ≤ T:

(22)

Compared to the simple (nonsliding-window) TV-DCT
decoder of Eqs. (20) and (21), the sliding-window TV-
DCT decoder enforces sparsity for any successive q frames
in the video sequence. Hence, it protects sharp temporal

changes for pixels that have fast motion in any q-frame-
sequence and smooths intensities for static or slow-motion
pixels in the same decoding window.

4 Experimental Results
In this section, we study experimentally the performance of
the proposed CS video systems by evaluating the peak sig-
nal-to-noise ratio (PSNR) (as well as the perceptual quality)
of reconstructed video sequences. Two test sequences,
Container and Highway, with CIF resolution 352 × 288 pix-
els and frame rate of 30 frames∕s, are used. Processing is
carried out only on the luminance component.

At our trivial, pure CS encoder side, each frame is handled
as a vectorized column of length N ¼ 101376 multiplied by
a P × N randomized partial WH matrix Φt. The sensing
matrix Φt is referred to as varying Φt if it is independently
generated to encode each frame and is referred to as fixed Φ
if it is generated only once to encode all frames in the video
sequence. The elements of the captured P-dimensional meas-
urement vector are quantized and then transmitted to the
decoder. In our experiments, P ¼ 12672, 25344, 38016,
50688, 63360 are used to produce the corresponding bit
rates of 3071.7, 6143.4, 9215.1, 12287, and 15358 kbps.
(Considering the quantization scheme described in Sec. 3
and frame rate 30 fps, the bit rate can be calculated as
ð16 × 0.01Pþ 8 × 0.99PÞ × 30∕1000 kbps.) With an Intel
i5-2410M 2.30-GHz processor, the encoding time per
frame is well within 0.1 s, whereas the H.264/AVC JM refer-
ence software programmed in C++ requires about 1.55 s with
low-complexity configurations.11

At the decoder side, we chose the TVAL3 software28,29 for
reconstruction motivated by its low-complexity and satisfac-
tory recovery performance characteristics. In our experimen-
tal studies for the slow-motion Container sequence, five CS
video systems are examined: (1) baseline fixedΦ acquisition
with frame-by-frame 2D-TV decoding [Eq. (6)]; (2) fixed Φ
and (3) varying Φt acquisition with TV-DCT decoding

Table 1 Empirical q values for container.

P∕N 0.125 0.25 0.375 0.5 0.625

Fixed Φ TV-DCT 20 20 20 20 20

Varying Φt TV-DCT 2 2 20 20 20

Varying Φt sliding-
windowTV-DCT

2 4 20 20 20

Fixed Φ 3D-TV 20 20 20 20 20

Table 2 Empirical q values for highway.

P∕N 0.125 0.25 0.375 0.5 0.625

Fixed Φ 3D-TV 20 20 20 20 20

Fixed Φ sliding-
windowTV-DCT

4 4 4 4 4

Fixed Φ TV-DCT 4 4 4 4 4

Fig. 5 Different decodings of the 28th frame of Container (P ¼ 0.625N). (a) Original frame. (b) Sliding-window TV-DCT (varying Φt , q ¼ 20).
(c) Plain TV-DCT (varying Φt , q ¼ 20). (d) Plain TV-DCT (fixed Φ, q ¼ 20). (e) 3D-TV (fixed Φ, q ¼ 20). (f) 2D-TV (fixed Φ).
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[Eqs. (20) and (21)]; (4) 3D-TV decoding with fixed Φ
[Eq. (19)]; and (5) varying Φt acquisition with sliding-
window TV-DCT decoding [Eqs. (20), (21), and (22)].
For the fast-motion Highway sequence, we show results
with fixed Φ for CS acquisition and (1) baseline 2D-TV
decoding [Eq. (6)]; (2) 3D-TV decoding [Eq. (19)]; (3)
plain TV-DCT decoder [Eqs. (20) and (21)]; and (4) slid-
ing-window TV-DCT decoder [Eqs. (20), (21), and (22)].
For all interframe decoders, q (the frame group size and win-
dow size, if pertinent) is chosen empirically to the values
shown in Tables 1 and 2.

Figure 5 shows the decodings of the 28th frame of
Container produced by the sliding-window TV-DCT decoder

with varyingΦt and window size q ¼ 20 [Fig. 5(b)], the TV-
DCT decoder with varying Φt [Fig. 5(c)], the TV-DCT
decoder with fixed Φ [Fig. 5(d)], the 3D-TV decoder with
fixed Φ [Fig. 5(e)], and the 2D-TV decoder with fixed Φ
[Fig. 5(f)]. It can be observed that the 2D-TV decoder as
well as the fixed Φ TV-DCT decoder suffer noticeable per-
formance loss over the whole image, whereas the varying Φt
sliding-window TV-DCT decoder demonstrates considerable
reconstruction quality improvement. (As usual, pdf format-
ting of the present article tends to dampen perceptual quality
differences between Fig. 5(a)–5(f) that are quite pronounced
in video playback. Figure 6 is the usual attempt to capture
average differences quantitatively.) These findings are con-
sistent with the belief that varying Φt, t ¼ 1; : : : ; q, in
Eq. (16) results in a joint block-diagonal recovery matrix
Φ̃ that is more likely to satisfy the restricted isometry prop-
erty (RIP)3 for a given data sparsity level.

Figure 6 shows the rate-distortion characteristics of the
five decoders for the Container video sequence. The
PSNR values (in dB) are averaged over 100 frames.
Evidently, the varying Φt TV-DCT decoder outperforms
the fixed Φ TV-DCT decoder for all P values, as well the
fixed Φ 2D-TV decoder at the median–low to high bit
rate range with gains as much as 5 dB. The proposed varying
Φt sliding-window TV-DCT decoder further improves per-
formance by up to an additional 2.5 dB.

For the Highway sequence with fixed Φ framewise CS
acquisition, Fig. 7 shows the decodings of the 54th frame
produced by the sliding-window TV-DCT decoder with win-
dow size q ¼ 4 [Fig. 7(b)], plain TV-DCT with group size
q ¼ 4 [Fig. 7(c)], 3D-TV decoder with group size q ¼ 20
[Fig. 7(d)], and baseline 2D-TV decoder [Fig. 7(e)]. By
Fig. 8, the proposed sliding-window TV-DCT decoder out-
performs both the 2D-TV decoder and the 3D-TV decoder at
median–low to high bit rate range, as well as the nonsliding-
window TV-DCT decoder.

2000 4000 6000 8000 10000 12000 14000 16000
25

30

35

40

45

bit rate (kbps)

P
S

N
R

 (
dB

)

varying Φ
t
, sliding−window TV−DCT

varying Φ
t
, TV−DCT

fixed Φ, TV−DCT

fixed Φ, 2D−TV

fixed Φ, 3D−TV

Fig. 6 Rate–distortion studies on the Container sequence.

Fig. 7 Different decodings of the 54th frame of Highway (P ¼ 0.625N). (a) Original frame. (b) Sliding-window TV-DCT (fixedΦ, q ¼ 4). (c) Plain TV-
DCT (fixed Φ, q ¼ 4). (d) 3D-TV (fixed Φ, q ¼ 20). (e) 2D-TV (fixed Φ).
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5 Conclusions
We propose an interframe TV minimizing decoder for video
streaming systems with plain framewise CS encoding. Each
group of successive frames is jointly decoded by minimiz-
ing the TV of the pixelwise DCT along the temporal direc-
tion (TV-DCT decoding). To capture local motion across
adjacent frames, a sliding-window decoding structure
was developed in which a decoding window specifies the
group of frames to be decoded. As the window continu-
ously shifts forward one frame at a time, multiple decodings
are produced for each frame in the video sequence, from
which the average is taken to form the final reconstructed
frame. Experimental results demonstrate that the proposed
sliding-window interframe TV minimizing decoder outper-
forms significantly the intraframe 2D-TV minimizing
decoder, as well as 3D-TV CS decoding schemes. In
terms of future work, to further reduce our encoder/decoder
complexity and maintain satisfactory video reconstruction
quality, we may develop block-level CS video acquisition
systems with rate-adaptive sampling at the encoder and
measurement matrices of deterministic design to facilitate
efficient encoding/decoding.
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