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Abstract. Jaggies (staircasing effects) along slanted lines or curved
edges are omnipresent in digital imaging. They are so widespread
in digital display devices that very often they are associated
with the modern “computerized” world (and sometimes even inten-
tionally introduced into artworks such as logos, advertisements,
etc. to convey a modern “pixelized” look). Although this subject is not
new, it still remains an important issue in the design of modern digital
display and printing devices. In the classical literature, jaggies are
often considered as aliasing artifacts; and yet some other references
consider them instead as reconstruction artifacts. The present
tutorial revisits this question and tries to elucidate the real nature of
this phenomenon using Fourier-based considerations. It shows that
the jaggies can be either aliasing artifacts due to poor sampling
in capture, or the result of poor reconstruction; and it explains the
implications thereof on the elimination of unwanted jaggies. © The
Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JEI.23.1.010801]

1 Introduction
It is well known that the approximation of continuous lines
or shapes by pixels on a discrete raster grid may cause
the appearance of jagged edges (also known as “jaggies” or
“staircasing effects”) on the shape’s borders (see Refs. 1 and 2,
p. 14). Such jaggies often occur during the sampling process
(analog-to-digital conversion) along slanted or curved
lines. They are most prominent on sharp edges such as
black/white transitions, as in Fig. 1(a), but they are also vis-
ible in smoother gray-level transitions, as in Fig. 1(b). These
jaggies are particularly objectionable at low resolutions (i.e.,
low sampling rates), but they may still be present even in
modern higher-resolution devices. Thus, although jaggies
are not new, they are still an important issue in the design
of today’s digital devices, as one can judge, for example, by
searching for the term “jaggies” in the U.S. patent database;
see, for example, the recent U.S. patents 8,350,967,
8,345,063, 8,294,730, 8,260,089, and 6,307,566 (Refs. 3–7),
to mention just a few. It is therefore important to have a good
understanding of this phenomenon and its origins.

In the classical computer graphics literature, and in par-
ticular, in the field of digital typography, jaggies are often
considered as aliasing effects (see, for example, Ref. 2,
pp. 14–15; Ref. 8; or Ref. 9, pp. 45–48). Moreover, the

methods devised for reducing the visibility of these jaggies
are often called antialiasing methods. On the other hand,
other references consider jaggies as artifacts that are due
to the reconstruction process (see, for example, Ref. 10,
pp. 107–108). Our aim in this tutorial is to elucidate this
question based on simple Fourier considerations: It is clear
that if jaggies are indeed aliasing phenomena, they must be
represented in some way or another in the Fourier domain
(i.e., in the frequency spectrum of the sampled image), too.
We will see that in many cases, jaggies are indeed aliasing
phenomena, but in other cases they are only generated in
the reconstruction stage, i.e., when the display device recre-
ates a continuous-world signal from the sampled one.

Note that throughout this tutorial, we assume that the jag-
gies in question are sufficiently big to be seen by the unaided
eye, and we do not discuss issues related to the human visual
system, modulation transfer functions, etc. Also, this tutorial
does not intend to provide formal theorems and proofs, but
rather favors an informal approach using Fourier-based
considerations and pictorial illustrations.

2 Background
Aliasing is a well-known phenomenon which may occur in
the discretization (sampling) of an underlying input function.
Discretizing an analog signal requires that the signal’s value
be sampled often enough to define the waveform unambig-
uously. According to the classical sampling theorem (see, for
example, Ref. 11, p. 115; Ref. 12, Sec. 8–7; or Ref. 13,
p. 1593), a sampling frequency of at least twice the highest
frequency present in the signal is sufficient for its waveform
to be defined completely, and for allowing its correct
reconstruction. (Note that lower sampling frequencies may
suffice for some special types of functions, as explained
in Appendix A; but the classical sampling theorem addresses
the general case.) If the sampling points are not taken as
densely as required (a situation often called undersampling),
they will fail to follow the high-frequency fine details of the
signal, thus leading to aliasing. In the signal domain, this is
expressed by the existence of a smoother, lower-frequency
signal, known as alias, which can be traced through all the
sampled points and “mimic” or “masquerade” the behavior
of the original signal on its sampled values (see Fig. 2). Only
based on these too far-apart sampling points, the original
signal is undistinguishable from its lower-frequency aliased
signal, since both of them coincide on all of these sampling
points. In other words, aliasing means that high-frequency
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components in the original signal appear incorrectly as lower
frequencies in the sampled result.

This is the interpretation of aliasing in terms of the signal
domain, but the aliasing phenomenon can be also interpreted
from the viewpoint of the spectral domain. Remember that
sampling in the signal domain is equivalent to multiplying
the original continuous signal gðxÞ by ð1∕ΔxÞIIIðx∕ΔxÞ,
a periodic unit-height impulse comb (impulse train) having
an impulse interval of Δx (see Fig. 3). The Fourier transform

of this sampling impulse comb is itself an impulse comb
with impulse interval of fs ¼ 1∕Δx and impulse height of
1∕Δx (see, for example, Ref. 14, pp. 227–228; Ref. 15,
p. 577):

F ½ð1∕ΔxÞIIIðx∕ΔxÞ� ¼ IIIðΔxuÞ: (1)

[Note that due to the impulse property δðx∕aÞ ¼ jajδðxÞ
(Ref. 15, p. 80) the impulse height of the comb IIIðx∕ΔxÞ
is Δx (Ref. 15, p. 577), and its unit-height counterpart is
ð1∕ΔxÞIIIðx∕ΔxÞ. Similarly, the impulse height of IIIðΔxuÞ
is 1∕Δx].

Therefore, by virtue of the convolution theorem, the effect
on the spectral domain of sampling gðxÞ is that GðuÞ, the
original spectrum of gðxÞ, is now convolved with the impulse
comb (1). This means that the spectrum of the sampled
version of gðxÞ consists of infinitely many identical replicas
of the spectrum GðuÞ, which are scaled by 1∕Δx (in terms of
the amplitude) and centered about all the integer multiples
of the sampling frequency fs ¼ 1∕Δx (see, for example,
Ref. 14, pp. 227–229 or Ref. 16, pp. 79–81):

F ½ð1∕ΔxÞIIIðx∕ΔxÞgðxÞ� ¼ F ½ð1∕ΔxÞIIIðx∕ΔxÞ� � F ½gðxÞ�
¼ IIIðΔxuÞ � GðuÞ; (2)

where � is the convolution operator.

Fig. 1 Jaggies in discrete-world images: (a) Along sharp edges (here:
slanted black lines forming the letter A). (b) Along smooth gray-level
shapes (here: a circular cosinusoidal wave).
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Fig. 2 Illustration of the signal-domain interpretation of aliasing:
(a) Sampling a continuous signal [here: a cosine function gðxÞ ¼
cosð2πf xÞ with frequency f ¼ 2] at a rate higher than twice the maxi-
mum signal frequency gives a correct discrete representation of
the original signal. (b) Sampling the same continuous signal at
a rate lower than twice the maximum signal frequency gives a false,
aliased lower-frequency signal (here: a cosine function with frequency
f ¼ 0.25) that mimics the original signal on its sampled values. Both
signals are drawn with continuous lines and their sampled values
are indicated by black dots.
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Fig. 3 Schematic illustration of the Fourier-domain interpretation of
aliasing: (a) An original continuous-world signal gðxÞ and its spectrum
GðuÞ. (b) The sampling impulse train and its spectrum. (c) The
sampled signal is the product of the signals (a) and (b), and therefore
its spectrum is the convolution of their spectra. Note the replicas of
the original spectrum that are located at all integer multiples of the
sampling frequency f s . (d) If the sampling rate is lower than twice
the maximum signal frequency f G (say, f 0s), then each two neighboring
replicas of GðuÞ overlap (additively), giving false aliased frequencies
in the overlapped zones. The aliased parts of the spectrum in (d) are
shown by thick dashed lines, which are simply the sum of the original
overlapped replicas. The horizontal arrows in (c) and (d) indicate the
frequency range that is obtained by discrete Fourier transform (DFT),
spanning between minus half and plus half of the sampling frequency.

Journal of Electronic Imaging 010801-2 Jan–Feb 2014 • Vol. 23(1)

Amidror and Hersch: Jaggies as aliasing or reconstruction phenomena: a tutorial



Note that if the spectrum GðuÞ of the original function
gðxÞ is continuous, so is the periodic spectrum (2) of the
sampled version of gðxÞ.

Let us now denote by fG the highest frequency in GðuÞ.
As long as the sampling frequency fs ¼ 1∕Δx is at least
twice fG, as required by the classical sampling theorem,
the replicas of GðuÞ are sufficiently far from each other to
avoid overlapping [Fig. 3(c)]. But if the sampling frequency
is lower than twice fG, every two neighboring replicas of
GðuÞ will somewhat overlap [Fig. 3(d)]; note that this over-
lapping is additive due to the properties of convolution. This
means in particular that frequencies from the neighboring
replicas will penetrate into the main replica (the replica
which is centered about the origin) and appear in the spec-
trum as parasite, false lower frequencies, known as aliased
frequencies. Note that in this case, too, all of the replicas
are identical; however, none of them (including the main
replica) remains identical to the original spectrum GðuÞ
itself, since they have all been corrupted (additively over-
lapped) by frequencies (positive or negative) belonging to
their neighboring replicas [see Fig. 3(d)].

The above discussion about aliasing can also be extended
to the two-dimensional (2-D) or multidimensional cases. In
such cases, sampling in the signal domain and the resulting
convolution in the spectral domain [Eq. (2)] are simply
extended to two or M-dimensions (we assume here that the
same sampling interval Δx is used along all the M dimen-
sions, but if required it is also possible to use along each
dimension a different sampling interval):

F ½ð1∕ΔxÞMIIIðx∕ΔxÞgðxÞ�¼F ½ð1∕ΔxÞMIIIðx∕ΔxÞ��F ½gðxÞ�
¼IIIðΔxuÞ�GðuÞ; (3)

where x, u ∈ RM, IIIðx∕ΔxÞ is the M-dimensional sampl-
ing impulse comb (having an impulse interval of Δx along
each dimension), and � is the M-dimensional convolution
operator.

3 Jaggies, Aliasing, and Reconstruction
Having reviewed the image-domain and the spectral-domain
manifestations of aliasing, how can this phenomenon be
related to jaggies?

Let us consider, as an illustrative example, a slightly
rotated periodic line grating, i.e., a periodic sequence of
1-valued lines with period T and width 0 < τ < T on a 0-val-
ued background (see Fig. 4, where black is negative, white is
positive, and midgray is zero). Its original spectrum, before
sampling, is a slightly rotated infinite comb whose impulse
interval is equal to the frequency of the line grating, and
whose impulse strengths are modulated by a sinc function
[which is 1∕T of the spectrum of a single line of width τ;
see Ref. 17, pp. 21–23 for the one-dimensional (1-D) case].
This spectrum is obviously not band limited. After sampling,
as we have seen in Eq. (3), the continuous-world spectrum of
the resulting sampled grating consists of the original comb
plus infinitely many replicas of this comb that are centered
about each impulse of a nailbed (which is itself the Fourier
transform of the sampling nailbed). This is shown in Fig. 4
[note that the spectra are obtained by discrete Fourier trans-
form (DFT), and they are only shown between the frequen-
cies −ð1∕2Þfs and ð1∕2Þfs along both of the axes, where fs
is the sampling frequency]. This means that the spectrum of

the sampled grating contains many new impulses belonging
to the new replicas. If any of these new impulses falls close
enough to the spectrum origin, as in Fig. 4(c) (note the two
encircled impulses), a new low-frequency structure (moiré
effect) becomes visible in our sampled grating, as shown by
the arrows in the image domain (for more details on the sam-
pling moiré effects see, for example, Ref. 17, Sec. 2.13). But
even if none of the new impulses falls close to the spectrum
origin and causes a moiré effect [see Fig. 4(b)], it is clear
that these new impulses still must correspond to some new
structures in the sampled grating, which did not exist in the
original, continuous grating. Indeed, it turns out that these
new impulses represent new frequencies that correspond to
the jaggedness of the sampled grating.

To see this, consider Fig. 5, which is intentionally drawn
at a lower resolution so that the individual jaggies as well as
the individual impulses in the spectrum can be clearly vis-
ible. Figure 5(a) shows the sampled grating and its spectrum
as obtained by DFT. As we can see, the spectrum contains
the main, original impulse comb (the slightly rotated comb
passing through the origin, which is indicated by the arrows)
plus impulses belonging to its new replicas due to the sam-
pling. In order to see the influence of these new impulses, let
us zero all of them, leaving in the spectrum only the impulses
belonging to the original comb. The corresponding structure
back in the signal domain is obtained by taking the inverse
DFT of this spectrum. The results of this manipulation are
shown in Fig. 5(b). As we can see in this figure, the effect
on the signal domain of eliminating the impulses of the new
replicas (the aliased impulses) consists of smoothing out
the jagged edges of the sampled grating (see the gray
level pixels along the line edges). Note, however, that this
does not yet completely eliminate the jaggies; as we will
see later, the residual jaggies that we still see in Fig. 5(b)
are reconstruction artifacts that occur due to the square pixels
being used to draw the sampled signal. Finally, Fig. 5(c)
shows what happens if we zero in the spectrum of Fig. 5(a)
the impulses of the original comb and keep only the new
impulses that are due to the sampling. Once again, the cor-
responding structure back in the signal domain is obtained
by taking the inverse DFT of this spectrum. Note that the
signal-domain structure in Fig. 5(c) is simply the difference
between the jagged grating of Fig. 5(a) and its smoothed-out
version of Fig. 5(b); this difference corresponds, indeed, to
the net effect of the jaggies themselves on the line edges.

Although these Fourier-based considerations are most
easily illustrated in periodic structures as in Fig. 5 (since
their spectra are purely impulsive), it is clear that jaggies
do not only occur in periodic structures. To illustrate a simple
aperiodic case consider Fig. 6, which shows a single slightly
rotated line of width τ > 0. The spectrum of this aperiodic
structure consists of a continuous infinitely long line impulse
(a “blade”) passing through the origin, whose amplitude is
modulated by a sinc function, and which is slightly rotated
by the same angle (Ref. 19, pp. 332–334). In this case, too,
the spectrum is obviously not band limited, so that the
sampled signal will suffer from aliasing. After sampling,
the spectrum of the resulting sampled line consists of the
original line impulse plus infinitely many replicas thereof.
Figure 6(a) shows the sampled line and its DFT spectrum.
Figure 6(b) shows the main line impulse, after zeroing all
its replicas (the aliased elements) in the DFT spectrum,
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Fig. 4 Aliasing in the two-dimensional (2-D) case: A simple example where the spectrum consists of a one-dimensional (1-D) impulse comb. The
original continuous-world function in the signal domain is a vertical line grating that has been slightly rotated by angle θ. Its spectrum is a horizontal
infinite impulse comb through the spectrum origin that is slightly rotated by the same angle θ, and whose impulse interval is equal to the frequency of
the grating (see, for example, Ref. 17, pp. 23–25). After sampling, the spectrum of the resulting sampled grating consists of the original comb plus
infinitely many replicas of this comb, that are centered about the points (kf s , l f s), where f s is the sampling frequency in both directions and k , l ∈ Z.
In each of the rows of this figure the left-hand column shows the sampled, discrete-world signal and the right-hand column shows its spectrum (as
obtained by DFT) between the frequencies −ð1∕2Þf s and ð1∕2Þf s in both directions. The only difference between the three rows is in the rotation
angle θ: (a) θ ¼ 0 deg; (b) θ ¼ 14 deg; and (c) θ ¼ 3 deg. In case (c), due to the small rotation angle, the replicas of the original comb form
a sharper angle θ with the horizontal axis of the spectrum, and thus they fall much closer to the original comb itself [compare the spectra in
rows (b) and (c)]. In such cases, impulses of the replicas may fall very close to the spectrum origin (see the two impulses marked by circles).
Indeed, these impulses correspond to a new low-frequency parasite structure (sampling moiré) which is clearly visible in the sampled line grating
(see the arrows in the signal domain). But even when none of the new impulses falls close to the spectrum origin [as in row (b)], it is clear that these
new impulses still must correspond to some new structures in the sampled gratings; and as we will see below, they correspond indeed to the
jaggedness of the sampled grating. The cross-like oscillations, which surround impulses in the spectra of (b) and (c), are due to the leakage artifact
of the DFT (see, for example, Ref. 16, Sec. 6.4). Note that in this and the following figures gray levels represent the displayed values: black is
negative, white is positive, and midgray is zero.
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Fig. 5 Jaggies along the edges of a sampled, slightly rotated line grating, and their spectral representation. (a) The sampled grating and
its spectrum (as obtained by DFT) between the frequencies −ð1∕2Þf s and ð1∕2Þf s in both directions; the arrows in the spectrum show
the main comb. (b) The impulses of the main comb alone, after zeroing all the remaining aliased impulses, and the corresponding signal-
domain structure obtained by inverse DFT. (c) The aliased impulses outside the main comb, after zeroing the impulses of the main comb,
and the corresponding signal-domain structure obtained by inverse DFT. As shown in (b), the effect on the signal domain of eliminating
the impulses of the other replicas (the aliased impulses) consists of smoothing out the jagged edges of the sampled grating (see the gray
level pixels along the line edges). The signal-domain structure in (c) is simply the difference between the jagged grating of (a) and
its smoothed-out version of (b); this difference corresponds, indeed, to the net effect of the jaggies themselves on the line edges. Note
that for the sake of simplicity, the grating shown in (a) is perfectly symmetric about its origin, so that the resulting spectrum is purely real-valued.
If the original continuous-world grating is slightly shifted before sampling, the jaggies in (a) may vary and lose their perfect symmetry;
in this case, each spectral component will also have an imaginary-valued part as predicted by the 2-D shift theorem (Ref. 18, p. 156), but
except for having in that case complex-valued impulses, nothing in our discussion will be changed. Note also that in the present figure,
there are no leakage artifacts because the figure is perfectly wraparound (see Sec. 6.4 in Ref. 16 for the 1-D case or Sec. 6.6 and
Remark 6.7 in Ref. 19 for the 2-D case).

Journal of Electronic Imaging 010801-5 Jan–Feb 2014 • Vol. 23(1)

Amidror and Hersch: Jaggies as aliasing or reconstruction phenomena: a tutorial



Signal domain Spectral domain
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Fig. 6 Same as in Fig. 5, except that this time the original continuous-world signal is not a slightly rotated line grating, but only a single line
taken from this grating (the central one). The spectrum of this line consists of a continuous line impulse passing through the origin whose
amplitude is modulated by a sinc function, and which is slightly rotated by the same angle. After sampling, the spectrum of the resulting sampled
line consists of the original line impulse (indicated by arrows) plus infinitely many replicas of this line impulse, that are centered about
the points (kf s , l f s), where f s is the sampling frequency in both directions and k , l ∈ Z. (a) The sampled line and its spectrum (as obtained
by DFT) between the frequencies −ð1∕2Þf s and ð1∕2Þf s in both directions. (b) The main line impulse, after zeroing all its replicas in the DFT
spectrum, and the corresponding signal-domain structure obtained by inverse DFT. (c) The replicas of the line impulse, after zeroing the main
line impulse, and the corresponding signal-domain structure obtained by inverse DFT. As in Fig. 5, the effect on the signal domain of eliminating
the aliased elements from the spectrum consists of smoothing out the jagged edges of the sampled line. The ripple effect in
the DFT spectrum is due to the leakage; leakage artifacts are present here because in this case the signal-domain figure is not wraparound
(see, for example, Sec. 6.6 in Ref. 19).
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and the corresponding signal-domain counterpart obtained
by inverse DFT. Finally, Fig. 6(c) shows only the replicas
of the line impulse, after zeroing the main line impulse itself,
and the corresponding signal-domain counterpart obtained
by inverse DFT. As in Fig. 5, the effect on the signal domain
of eliminating the aliased elements from the spectrum con-
sists of smoothing out the jagged edges of the sampled line.

Note that in both Figs. 5 and 6, the jaggies occur on
slanted edges. In both cases, if the lines in the signal domain
are purely vertical (or horizontal) no jaggies appear on their
edges. Indeed, in such cases, the new replicas in the DFT
spectrum due to the sampling fall on top of the original rep-
lica, and no new frequencies are generated that correspond to
jaggies [see Figs. 4(a) and 7].

As we can see, there is indeed strong evidence in favor of
considering jaggies as aliasing phenomena. Furthermore,
just like the previously discussed facets of aliasing (masquer-
ading lower frequencies in the signal domain or overlapping
of replicas in the spectral domain), jaggies, too, tend to

become less prominent when we increase the sampling
resolution or when we apply low-pass filtering prior to the
sampling, so that sharp transitions become smoother.1,20

On the other hand, there are also good reasons against
considering jaggies as aliasing phenomena. For example,
there exist many structures that present strong aliasing, but
have no jaggies at all (for instance, as shown in Fig. 7,
a sampled horizontal or vertical line grating may have
a sampling moiré effect due to new aliased low frequencies
without having jaggies). This means, indeed, that aliasing
does not necessarily cause jaggies. But furthermore, jaggies
may also exist when there is no aliasing at all—for example,
in a 2-D plot of a slightly rotated cosinusoidal grating, whose
frequency is far below half of the sampling frequency (see
Fig. 8). How can this be explained?

The key for understanding this question resides in the
ambiguity of the term aliasing. This term is used in the liter-
ature for two different effects: (1) the distortion that is
produced by poor sampling, and which causes the sampled
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Fig. 7 A sampled vertical line grating may have a sampling moiré effect (note the periodically repeating thicker vertical lines) due to the new aliased
low frequencies that appear due to an interaction with the sampling frequency. Compare with Fig. 4(a), where no sampling moiré occurs. In both
cases, no jaggies are present.
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Fig. 8 Low-resolution figure showing a slightly rotated cosine wave of frequency f ¼ 0.88 and its spectrum. Note that jaggies are visible although
the sampling frequency f s ¼ 4 is higher than 2f , and no aliasing occurs in the sampling process.
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signal to become indistinguishable from a lower-frequency
signal (an alias); and (2) the distortion that is produced by
poor reconstruction, which causes the signal that is recon-
structed from the samples to be different from the original
continuous signal (again, an alias). Note that both of these
problems originate from failures in the correct application
of the sampling theorem: the failure to fulfil the required con-
dition on the frequencies leads to sampling aliasing; while
the failure to approximate ideal reconstruction leads to
reconstruction error. To resolve this terminological ambigu-
ity, we will henceforth call the first, classical effect aliasing
due to the sampling or sampling aliasing, while the second
effect will be called reconstruction error [other terms being
sometimes used in the literature are prealiasing and postalias-
ing, respectively (see Ref. 21, p. 222)]. Let us explain this in
more detail.

Sampling is the process that converts a continuous signal
to a discrete one, while reconstruction is the process that
recreates a continuous signal from its samples (Ref. 2,
Sec. 14.10.5; Ref. 21). Note that theoretically, a sampled
signal consists of zero-width impulses (of varying heights),
and not of real-world “pixels” having square or circular
shapes. It is precisely the reconstruction process that brings
back the “flesh” around each of the sampled “bones.”
Now, according to the classical sampling theorem, all the
information in the original continuous signal is preserved
in its sampled version, if the sampling frequency is at
least twice the highest frequency contained in the signal.
Under this condition, the theorem guarantees that the original
continuous signal can be perfectly reconstructed by multiply-
ing the spectrum of the sampled signal with a rect function
that cuts off all the frequencies beyond half of the sampling
frequency, or equivalently, by convolving the sampled signal
with the Fourier transform of this rect function, i.e., with
the corresponding narrow sinc function (Ref. 16, p. 83).
This is easier to understand in the spectral domain, as is

clearly shown in the right-hand column of Figs. 3 and 9.
To formulate the perfect reconstruction process shown in
Fig. 9 mathematically, let us denote our sampled signal by
sðxÞ ¼ ð1∕ΔxÞIIIðx∕ΔxÞgðxÞ and its spectrum by SðuÞ ¼
IIIðΔxuÞ � GðuÞ [see row (c) in Fig. 3, which has been
copied into row (a) of Fig. 9]. We also denote the ideal
rect function that cuts off all the frequencies above ð1∕2Þfs
and below −ð1∕2Þfs by Δx rectðu∕fsÞ, where fs ¼ 1∕Δx is
the sampling frequency [see Fig. 9(b); the constant factor
Δx ¼ 1∕fs is required to normalize the heights]. Then,
the product of the spectra in rows (a) and (b) of Fig. 9
gives back, as we can see in Fig. 9(c), the original spectrum
GðuÞ:

SðuÞΔx rectðu∕fsÞ ¼ GðuÞ: (4)

Therefore, in the signal domain of Fig. 9(c), the convo-
lution of the sampled signal sðxÞwithF−1½Δx rectðu∕fsÞ� ¼
sincðfsxÞ yields, indeed, a perfect reconstruction of our
original signal gðxÞ:

sðxÞ � sincðfsxÞ ¼ gðxÞ: (5)

However, in practice, the reconstruction of a sampled sig-
nal is never done by convolving its impulses with an infinite-
range sinc function, as stipulated by the classical sampling
theorem and shown in Fig. 9. Instead, each impulse of the
sampled signal is typically represented (i.e., convolved)
by a pulse function pðxÞ, whose width equals the distance
between two consecutive samples (see Fig. 10). [This is, of
course, a theoretic idealization, since usually pðxÞ is not
a perfect rectangle.] Stating this mathematically, in the case
of real-world reconstruction we get in the spectral domain
the product [see Fig. 10(c)]:

SðuÞPðuÞ ≠ GðuÞ; (6)
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(b)

(c)
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Fig. 9 Continuation of Fig. 3 showing schematically the signal and
spectral domain representations of an ideal reconstruction process,
which gives back exactly the original continuous signal we had before
sampling. (a) The sampled signal, as in Fig. 3(c). (b) The ideal
reconstruction function according to the classical sampling theorem
(a narrow sinc function of height 1) and its spectrum, which is
a rect function of height 1∕f s ¼ Δx that extends from −ð1∕2Þf s to
ð1∕2Þf s . (c) The perfectly reconstructed signal [convolution of the sig-
nals (a) and (b)] and its spectrum [product of the spectra (a) and (b)].
Note that the reconstructed signal in row (c) is indeed identical to
the original continuous signal shown in row (a) of Fig. 3.
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Fig. 10 Continuation of Fig. 3 showing schematically the signal and
spectral domain representations of a nonideal reconstruction process,
that causes reconstruction artifacts. (a) The sampled signal, as in
Fig. 3(c). (b) A nonideal reconstruction function (a rect function rep-
resenting a square pixel) and its spectrum, which is a sinc function
that extends ad infinitum. (c) The reconstructed signal [convolution
of the signals (a) and (b)] and its spectrum [product of the spectra
(a) and (b)]. Row (c) is not identical to row (a) in Fig. 3, and it contains
reconstruction artifacts (note the debris from the neighboring replicas
that give new high-frequency noise in the resulting reconstructed
signal).
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[where PðuÞ is the spectrum of pðxÞ] rather than the perfectly
reconstructed spectrum of Eq. (4). Indeed, in the signal
domain of Fig. 10(c), the convolution of the sampled signal
sðxÞ with the “pixel” pðxÞ does not yield a precise copy of
our original signal gðxÞ but rather a pixelized or jagged
version thereof:

sðxÞ � pðxÞ ≠ gðxÞ: (7)

Similarly, in the 2-D case (like in computer displays or in
digital printing devices) each impulse of the sampled signal
sðx; yÞ to be displayed is convolved with a single pixel shape
pðx; yÞ (which may be, depending on the device, a square
dot, a circular dot, etc.). The resulting reconstructed signal
may therefore have highly visible jaggies along its borders
(see Fig. 8), and possibly also sharp transitions between the
values of neighboring pixels. These elements correspond
to new high frequencies in the reconstructed signal that
are not present in the samples, and which do not exist in
the original, continuous signal gðx; yÞ, either (see the 1-D
spectral domain explanation of Fig. 10). This process results
in reconstruction errors, since when the resolution of
the display device is not sufficient the reconstructed image
differs significantly from the original continuous image (it is
pixelized and jagged), and what we actually see is an alias.
This kind of “aliasing” has nothing to do with undersampling
and it is solely due to poor reconstruction; indeed, as already
mentioned above, this phenomenon may occur even in cases
which are completely alias-free (in the classical sense), as
in Fig. 8.

Note that in some cases the individual display-device
pixel pðx; yÞ is smoother and has the shape of a narrow
2-D Gaussian; this is often the case in CRT displays. In
such cases reconstruction errors still exist (although they
look smoother), since the spectrum of a Gaussian is itself
a Gaussian (Ref. 18, p. 149), which is obviously not
a band-limited spectrum.

Let us now return to our original question. As we can see
in Figs. 5 and 6, in many cases jaggies indeed result from the
sampling aliasing, and they are represented in the spectrum
by aliased elements (this is particularly evident when
sampling a 2-D signal involving slanted sharp transitions,
which is not band limited and hence suffers from aliasing).
Clearly, jaggies are further amplified by the reconstruction
errors (poor reconstruction of the signal). However, they
can even be generated by the reconstruction errors if they
have not already been generated due to the sampling aliasing.
This is the case, for example, in a slightly rotated low-fre-
quency cosinusoidal grating, which is clearly band limited
and has no sampling aliasing (the impulse samples along
the corrugations of the sampled cosinusoidal grating are
gradually attenuated in such a way that no jaggies are appar-
ent). In cases like this, if the reconstruction is correctly
done, as stipulated by the classical sampling theorem, no
jaggies should appear in the reconstructed signal; and if
jaggies do appear—as in Fig. 8—this is only due to the
reconstruction error. Indeed, this observation led some refer-
ences to say that jaggies are not aliasing artifacts as often
claimed in the literature, but rather reconstruction artifacts
(see, for example, Ref. 10, pp. 107–108).

In conclusion, we see that jaggies have mixed origins: in
some cases as in Figs. 5 and 6, they are due to the sampling
aliasing (although even then they may be further amplified

by poor reconstruction); but in other cases, like in a low-res-
olution cosinusoidal grating (Fig. 8), they are a pure product
of poor reconstruction. In the first case, jaggies clearly mani-
fest themselves as aliased elements in the spectrum of the
sampled signal, but in the latter case they do not, since they
only occur in a later stage, during the reconstruction of the
continuous signal (hence the name postaliasing). Of course,
they would have appeared in the continuous-world spectrum
of the reconstructed signal, as shown in Fig. 10(c), had we
cared to produce such a spectrum.

Finally, let us return to the question with which we
opened this section: What is the connection between the
sampling-induced jaggies and the classical manifestations
of aliasing (masquerading lower-frequencies in the signal
domain or spectral replications in the spectral domain)?
Indeed, the most notorious signal-domain manifestation of
aliasing consists of cases where new very low-frequency
structures appear due to the sampling process, as shown in
Fig. 2(b) for the 1-D case and in Fig. 4(c) for the 2-D case.
These new very low-frequency structures are simply sam-
pling moirés. But the spectral-domain replicas due to the
sampling process may also introduce new aliased frequen-
cies that are higher than this. These new higher frequencies
contribute to the microstructure details of the sampled signal
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Fig. 11 Same as Fig. 9, but this time we take as our starting point row
(d) of Fig. 3 (i.e., a poorly sampled and slightly aliased signal) rather
than row (c) of Fig. 3 (a correctly sampled signal). In such cases, even
a convolution with a narrow sinc reconstruction function, as we did in
Fig. 9, will not be able to recover from the sampled signal the original
jagless, continuous-world signal, since a multiplication in the spectral
domain with the corresponding rect function will not be able to elimi-
nate the aliased frequencies. (a) The poorly sampled and aliased sig-
nal of Fig. 3(d). (b) The narrow sinc reconstruction function whose
spectrum is a rect function extending from minus half to plus half
of the sampling frequency f 0s . (c) The reconstructed signal [convolu-
tion of the signals (a) and (b)] and its spectrum [product of the spectra
(a) and (b)]. Note that the reconstructed signal in row (c) is contami-
nated by new high frequencies, and is not identical to the original
continuous signal shown in row (a) of Fig. 3, even though we have
used here a good reconstruction function. Because in this case
the conditions required by the sampling theorem are not met in
the sampling stage, the results stipulated by the theorem for the
reconstruction stage are no longer guaranteed (see Appendix A).
This figure illustrates the fact that jaggies or other parasite phenom-
ena that are due to poor sampling cannot be eliminated by a general
recipe improving the reconstruction process (for example, by using
a narrow sinc-shaped element, as done in this figure, rather than
the narrow rect pixel usually used in the display devices).
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and give it its typical jagged look, as shown for example
in Fig. 5.

4 Discussion
The fact that jaggies can result either from poor sampling or
from poor reconstruction (or both) has a direct implication on
the methods to be used for their elimination. Clearly, jaggies
that are generated by aliasing (poor sampling) will not
be eliminated by improvements in the reconstruction stage
(see a spectral-domain illustration in Fig. 11 and a signal-
domain illustration in Fig. 12). Similarly, jaggies that are
only due to poor reconstruction (as in Fig. 8) will not be
eliminated by improvements in the sampling stage, such
as prefiltering of the original signal before its sampling or
other antialiasing methods. Thus, whenever it is needed
to eliminate jaggies, for example, during the developing
process of a new display device, it is important to first pre-
cisely understand the origin of the jaggies in question before
trying to set up an adequate solution. The optimal way for
eliminating (or at least reducing) jaggies on a display device
depends, of course, on the specific properties of the device in
question, as we can see from the multitude of patents that
continue to be issued on this subject year by year. Of course,
as a general rule, increasing the device resolution whenever
this is feasible, will also decrease the size of the jaggies, and
hence reduce their visibility. On very high resolution devices
display artifacts such as jaggies will no longer be visible to
the unaided eye.

5 Conclusion
Digital devices such as smartphone displays, computer
displays, printers, etc., are being constantly developed and
improved. Rendering of digital text and graphics on such
devices involves conversions from analog to digital and
back, yielding jaggies as unavoidable artifacts. Although
this phenomenon is not new, it still remains an important
issue in the design of modern digital display and printing
devices. The present tutorial sheds some light on this phe-
nomenon. Based on simple Fourier considerations it shows
that jaggies can be, depending on the case, either the out-
come of aliasing, i.e., a sampling artifact, or a reconstruction
artifact. This also has a direct impact on the methods to
be used for the elimination of undesirable jaggies, since
antialiasing methods, such as prefiltering, will not eliminate
jaggies that are reconstruction artifacts and vice versa.
Understanding the real nature of the jaggies in each case
may therefore help in their elimination (when they are indeed
undesired). Note that our discussion here is completely
general, and applies also to the three-dimensional (3-D) case,
where jaggies are generated by 3-D printing devices.

Appendix A
As mentioned earlier, the classical sampling theorem says
that all the information in the original continuous signal is
preserved in its sampled version if the sampling frequency
is at least twice the highest frequency contained in the signal.
Under this condition, the theorem guarantees (see Fig. 9)
that the original continuous signal can be perfectly recon-
structed by multiplying the spectrum of the sampled
signal with a rect function that cuts off all the frequencies
beyond half of the sampling frequency, or equivalently, by
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Fig. 12 Looking at Fig. 8, it may be tempting to say that pixeliza-
tion and jaggies originate from improper reconstruction (for example,
due to the use of square pixels rather than narrow 2-D sinc-shaped
elements). However, this is not always true, and sometimes jaggies
originate from improper sampling, and no general recipes for
improvements in the reconstruction stage can eliminate them.
The present figure illustrates this more intuitively, directly in the
signal domain, showing the sampled versions of a slightly rotated
binary (0∕1-valued) line in (a), and of a low frequency cosinusoidal
function (whose values vary between 0 and 1) in (b). Both of the
sampled signals (a) and (b) are shown before reconstruction, i.e.,
as pure impulses before their convolution with the pixel function
pðx; yÞ. Note that in (b) the sampled cosinusoidal structure consists
of impulses with gradually varying values, whereas in (a) the
sampled slanted line consists of only 0- and 1-valued impulses,
so that sharp 0∕1 transitions are omnipresent. In the cosinusoidal
case, where the signal varies slowly, a convolution with a narrow
2-D sinc-shaped pixel can yield a smooth, continuous reconstructed
structure, as stipulated by the classical sampling theorem. But this
is hopeless in the case of the binary line, which is not band
limited and therefore does not meet the conditions of the sampling
theorem.
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convolving the sampled signal with the Fourier transform of
this rect function, i.e., with the corresponding narrow sinc
function (Ref. 16, p. 83).

Figures 11 and 12 show that when the conditions required
by the classical sampling theorem are not met in the sam-
pling stage (i.e., when the sampling frequency is not at
least twice the highest frequency contained in the original
unsampled signal), the results stipulated by the theorem
for the reconstruction stage are not guaranteed. In such
cases, the narrow sinc reconstruction function is not neces-
sarily optimal (see Fig. 11). Moreover, in such cases, there
may exist no general recipe for reconstruction functions that
can recover the original continuous-world signal (and hence
eliminate all jaggies). Yet, the mere fact that the conditions of
the classical sampling theorem (known as Nyquist condi-
tions) are not met does not yet imply that no optimal
reconstruction function may exist. Indeed, for certain fami-
lies of signals that do not meet the Nyquist conditions there
still may exist particular variants of the sampling theorem
that allow to recover the original signal from its samples
using some particular reconstruction functions (see, for
example, Refs. 22 and 23). But such reconstruction functions
are obviously not general, and they only work for the respec-
tive families of input signals.

In conclusion, we see that nothing general can be said
about cases in which the conditions of the classical sampling
theorem are not met, and the situation then should be studied
on a case-by-case basis.

Readers who wish to deepen their understanding of the
generalized sampling theory and to break out of the unreal-
istic case of band-limited signals may refer to Ref. 23, which
goes much beyond the theory required for the present
tutorial.
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