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Abstract. Synthetic aperture radar (SAR) image despeckling is a preprocessing method. SAR
images are, by default, noisy in nature. The kind of noise found in SAR images is called speckle
noise. The effect of this noise on SAR images is highly adverse. It degrades the quality of the
SAR image, resulting in the loss of vital information. Since SAR images are inherently speckled
in nature, it costs a lot of information loss. The removal of such noise from the SAR image is
mandatory and is the first step. The elimination of speckle noise from SAR images is called SAR
image despeckling. There are various traditional and nontraditional methods of SAR image des-
peckling based on Bayesian and non-Bayesian techniques. The SAR image despeckling methods
based on Bayesian techniques are further subdivided into spatial and transform domains. This
paper presents a comparative review of nontraditional perspectives on SAR image despeckling.
The comparison is made based on methodology, objectives, merits, and demerits. Its focus is
to do analysis of all the latest research done in the field of SAR image despeckling using non-
traditional methods. © 2022 SPIE and IS&T [DOI: 10.1117/1.JEI.32.2.021609]
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1 Introduction

A radar’s antenna size determines whether it is a real aperture radar (RAR) or a synthetic aperture
radar (SAR). RAR includes the noncoherent radars that are regulated by the antenna’s length.1

Active radar uses high-frequency radar waves from the antenna to deliver images to the desired
area of the landscape. If the antenna’s length is large, then the image captured is also big and
contains a lot of Earth’s surface information.2 However, lengthening the antenna often is not a
feasible solution to get high-resolution image, because on many satellites and aircraft, there is
limited ability to attach large-size antennae. To get around this problem, engineers and scientists
have created the synthetic aperture. When many small antennas are joined, the array of smaller
antennae seems to be much bigger, allowing for better and bigger data resolution. High-
resolution images of the entire Earth’s surface are captured by SAR, which is a coherent radar
connected to satellites and aircraft.3 The antenna size on many satellites and aircraft is fixed in
RAR, whereas in the case of SAR, the antenna mounted on satellites and aircraft is synthetic in
nature, which means it moves forward and backward. As it moves forward, the SAR antenna also
moves and keeps transmitting high-frequency radar waves toward the Earth’s surface. These
high-frequency radar waves hit the target and reflect.4 The backscattered energy is received
by the SAR and processed as well. This processing of received SAR data requires a lot of time,
as it is a high computational process. The received SAR data in the form of high-resolution SAR
images is resultant of consistent interaction of constructive and destructive interference of trans-
mitted high-frequency radar waves with target on the Earth’s surface.5
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This constructive and destructive interference causes a lot of information loss as well as
quality degradation during the image acquisition phase. This information loss as well as quality
degradation appears in the SAR image in the form of a scattering phenomenon.6 This scattering
phenomenon is speckle noise. This speckle noise is inherently present in the SAR images. It
badly degrades the image quality of SAR image.7 The speckle noise has granular pattern that
looks like the image is severely affected by salt-and-pepper noise.8 The SAR images need to
preprocess before performing any kind of classification operation on SAR images. This prepro-
cessing is SAR image despeckling.9 The elimination of speckle noise from SAR image is called
as SAR image despeckling. This preprocessing method is a mandatory step in any kind of
SAR image processing as it improves the image quality and makes further processing easier.10

The effect of speckle noise is much bad in comparison to other kind of noise patterns.11 Its main
reason is its multiplicative nature. The pattern of speckle noise follows a gamma distribution.12

Speckle noise is multiplicative in nature. So, it is a multiplicative noise. The effect of multipli-
cative noise is comparatively bad than additive noise. Here in multiplicative noise, the external
noise components get multiplied by the reference SAR data resulting into noisy SAR image.13

There are multiple traditional and nontraditional SAR image despeckling methods. These
methods are grouped into Bayesian and non-Bayesian methods. The traditional SAR image des-
peckling methods are mostly based on Bayesian techniques in spatial domain. While the non-
traditional SAR image despeckling methods are based on Bayesian techniques in transform
domain and non-Bayesian techniques. Bayesian and non-Bayesian approaches both have a few
benefits and downsides. Bayesian employs probabilities of data and probabilities of both hypoth-
eses, but non-Bayesian does not use or compute the probability of the hypothesis. Non-Bayesian
approaches rely on the probabilities of seen and unobserved data and do not need the develop-
ment of a prior. Bayesian approaches, on the other hand, rely on a prior and the likelihood of the
observed data. There are increasing claims that Bayesian statistics is much more convenient for
clinical research, as well as attempts to use both non-Bayesian and Bayesian statistics for data
processing in clinical research. However, the significance of Bayesian statistics also rises, as
it is fundamental for machine learning algorithms, i.e., artificial intelligence-based systems.
Consequently, we should see Bayesian approaches as another potent instrument for processing
our data.

Speckle noise is a serious issue in the SAR images that needs to address in the preprocessing
stage. This step is considered as a mandatory step when dealing with SAR image. Because of
this, a continuous advancement has been seen in this field. A lot of research has been done in
multiple domains with great results as well. The traditional methods are effective in this domain
but the nontraditional methods that are hybrid are more effective in this domain. The despeckling
results of nontraditional methods are seen as better than the traditional methods. This paper
presents a comparative analysis of many nontraditional methods for SAR image despeckling.

1.1 Role of Wavelength in SAR Images

Optical sensors acquire data in the visible, near-infrared, and short-wave infrared ranges of the
electromagnetic spectrum (1 μm). Radar sensors use longer wavelengths, giving them unique
abilities like seeing through clouds ranging from 1 cm to 1 m. It is common to refer to SAR’s
distinct wavelengths by letters such as X, C, P, and L. When dealing with SAR, it is crucial to
keep in mind that wavelength is an important aspect to take into consideration since it impacts
how the radar signal contacts with the terrain and how far a signal may penetrate a medium. In a
recent letter published in Ref. 14, two novel approaches for detecting changes in SAR image
stacks using the Neyman–Pearson criteria were introduced. The first suggested technique obtains
background statistics from a stack of photos with different wavelength resolutions and then
applies a hypothesis test to identify anomalies in a surveillance image. The second strategy con-
siders prior knowledge of the targets to collect target data, which are then combined with back-
ground statistics to conduct a hypothesis test to spot shifts in a surveillance image. Stacks of SAR
images captured at different wavelengths are analyzed statistically for clutter in the latter.15

Images in a stack are SAR images taken with the same sensor along the same flight path,
of the same location, at different times of day. This letter describes a convolutional neural net-
work (CNN)-based incoherent change detection method (CDA) for wavelength-resolution SAR.
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The proposed CDA consists of a CNN for segmentation, which localizes prospective changes,
and a CNN for classification, which evaluates these candidates and classifies them as either true
changes or false alarms.

1.2 Availability of Dataset and Material

Figure 1 shows SAR image dataset. The real SAR image dataset is taken from the open public
database. The description and availability of all these images are available in the cited references.
The SAR image in Fig. 1(a) belongs to Ka-band and its wavelength ranges from 1.1 to 0.8 cm
available in Ref. 16. The SAR image in Fig. 1(b) belongs to C band and its wavelength ranges
from 3.8 to 2.4 cm available at Ref. 17. The SAR image in Fig. 1(c) belongs to S-band and its
wavelength range from 15 to 7.5 cm available at open database platform.18,19 The SAR images in
Figs. 1(d) and 1(e) are taken from the open database platform available at Ref. 20. SAR image
in Fig. 1(d) belongs to same S band and SAR image in Fig. 1(e) belongs to P band and its
wavelength ranges from 100 to 30 cm.

The results shown in Sec. 5.2 are evaluated and demonstrated under MATLAB environment,
i.e., version: MATLAB R2022a. All the MATLAB codes are run on windows 10 pro–operating
system. Processor: 11th Gen Intel(R) Core(TM), i5-1145G7 @ 2.60 GHz. Ram: 16.0 GB,
Operating system type is 64-bit.

1.3 Significance of this Study and its Major Contribution

Most of the research done in the field of SAR image despeckling lies under two categories:
Bayesian approaches in the transform domain and non-Bayesian approaches. The main method-
ologies that come under the Bayesian approach in the transform domain are using homomorphic
and nonhomomorphic filtering. The homomorphic filtering methods are more prevalent because
they can use additive restoration models easily, while nonhomomorphic filtering cannot do so.
The significant filtering methods that come under non-Bayesian approaches are anisotropic dif-
fusion, total variation, and deep learning-based methods. This paper presents how these standard
methods are used in a nontraditional way. The discussed hybrid nontraditional methods show
better despeckling results in terms of qualitative and quantitative analysis. The paper further
discusses how traditional methods like DWT and others are incorporated with other methods
like method noise thresholding and correlation-based fusion mechanisms to deliver far better
results than their original results. The paper also discusses various perspectives of these non-
traditional despeckling methods, like objectives, methodologies, merits, and demerits.

With the motivation of Refs. 9 and 21, this review paper focuses on comparing the most
recent and best nontraditional SAR image despeckling methods that show the great despeckling
result in terms of fine detail preservation without loss of any information. This paper will help
and motivate the new researchers who want to work in the field of SAR image despeckling. The
paper surveys only those papers that are using hybrid techniques using some prevalent mecha-
nism. Also, it aims to compare the different papers based on their objectives, methodology,
merits, and demerits.

The organization of this review paper is as follows: Sec. 1 introduces SAR image, speckle
noise, SAR image despeckling, role of wavelength in SAR image, and motive of this review
paper. Section 2 discusses the scattering and polarization process. Section 3 discusses the various

Fig. 1 SAR image dataset.
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problems in SAR image. Section 4 discusses the latest nontraditional hybrid methods of SAR
image despeckling. Section 5 compares nontraditional hybrid methods based on their objectives,
merits, demerits, etc. It also analyzes few latest nontraditional hybrid methods based on their
visual results and using different metrics. Last, Sec. 6 concludes the review paper.

2 Scattering and Polarization Processes

By adjusting the analyzed polarization in both transmit and receive pathways, radar may gather
signals in various polarizations. The direction of oscillation of the transmitted radar signals is
referred to as polarization. SAR sensors normally provide data that is linearly polarized, even
though the sensors’ orientation may be at any angle. The symbol H stands for horizontal polari-
zation, whereas the letter V stands for vertical polarization. Radar sensors have the benefit of
being able to accurately regulate the polarization of the sent and received signals. For signals that
are both Vand H polarization, they would be labeled as VH. Another way to express this is to use
the abbreviation HH for H and V signals, respectively.22

The composition of the imaging surfaces is revealed by analyzing the signal intensity from
these distinct polarizations, depending on the following scattering types: rough surface, volume,
and double bounce.

• The rough surface such as bare earth or water scatters, it is the most susceptible to VV
scattering.

• VH or HV cross-polarized data, such as the scattering of leaves and branches under a forest
canopy, is especially susceptible to volume scattering.

• HH polarized signals are most susceptible to double bounce scattering, the last form of
scattering. This is produced by structures like buildings, trees, or flooded vegetation.23

The different scattering types are visually shown in Fig. 2.
We must remember that various scattering types may have differing amounts of signal due to

wavelength, since wavelength affects how far a signal may penetrate. As an example, a C-band
signal can penetrate only the upper levels of a forest’s canopy, and so will encounter predomi-
nantly roughness scattering combined with a minor degree of volume scattering. However, an L-
band or P-band signal will penetrate considerably deeper and so suffer much more volume scat-
tering and more double-bounce scattering due to the tree trunk.24 Different SAR bands with their
defined wavelength are shown in Fig. 3.

3 Problem in SAR Image

Several factors may cause the SAR system’s performance to degrade and the picture quality to
degrade. The nonlinearities of the SAR subsystem have a detrimental effect on the system’s
capacity to resolve. Image acquisition is a substantial contributor to the noise in SAR imaging

Fig. 2 Different scattering type: rough surface, volume, and double bounce.22
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system. The sensor’s location and velocity inaccuracies, which cause geometric distortion in the
SAR image, are further sources of noise introduction. There are mainly four types of problems
found in SAR image.25 The major source of their introduction is briefly discussed below:

• Geometric distortion: Change in position of spaceborne or airborne antennae, rotation of
Earth, deviation in sensor mechanism and viewing geometry, refraction and turbulence,
time variations or drift and clock synchronicity.26

• System nonlinear effects: Amplitude error, phase error, quantization error, bit error noise,
and system nonlinearities.26

• Range migration: Elliptical orbit and Earth rotation, target move toward the synthetic
aperture, high velocities of airplanes, and satellite-borne SAR system.27

• Speckle noise effects:When high-frequency radar waves contact with target locations, the
SAR image is created. Because of this ongoing contact, the image gets damaged by salt and
pepper noise, which may be both constructive and destructive interactions. This granular
effect is scattered across the SAR image and its adverse effects turn into speckle noise,
which lowers the image quality. The SAR image has intrinsic noise in the form of a granu-
lar pattern.28

Speckle noise is multiplicative in nature found mainly in SAR images and medical ultrasound
images. The speckle noise in SAR images follows a gamma distribution as a noise pattern. The
speckle noise in medical ultrasound images follows Rayleigh distribution as a noise pattern. The
shape of gamma noise is very similar to Rayleigh distribution. The main difference between
these two distributions is gamma distribution starts from zero while the Rayleigh distribution
does not start from zero. Figure 4 shows classical speckle pattern. The speckle noise model is
represented as

EQ-TARGET;temp:intralink-;e001;116;310Kðg; hÞ ¼ Lðg; hÞ ×Mðg; hÞ: (1)

In Eq. (1), speckle noise is represented as product of speckle-free pixel Lðg; hÞ to be estimated
from Kðg; hÞ and multiplicative speckle noise with unit mean and standard deviation Mðg; hÞ.
Kðg; hÞ is the distorted pixel of the image.

Fig. 4 Traditional speckle pattern.9

Fig. 3 SAR band: (a) X-band (3 cm); (b) C-band (6 cm); (c) L-band (24 cm); (d) P-band (65 cm).22
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4 Literature Survey

Noise2noise despeckling, which can train a deep neural network using only speckled SAR
images, has shown highly promising results in recent research studies. If the dataset is well-
registered, then the approach employed in Ref. 29 presents a similarity estimation to adjust for
the little time volatility in the data. A transformer-based network for despeckling SAR images is
introduced in Ref. 30. An encoder based on a transformer enables the proposed despeckling
network to learn global relationships between picture areas, which improves despeckling per-
formance. Synthetically produced speckled images are used to train the system end-to-end. A
dictionary learning and multiweighted sparse coding-based integrated SAR image despeckling
model is proposed in Ref. 31. The dictionary is first trained using sets of comparable image
patches, each of which has the same structural properties. For an orthogonal dictionary with
good sparse representation capability, a correctly tight frame is necessary. The proposed
model31 is built using quick and efficient solution stages that conduct orthogonal dictionary
learning, weight parameter updating, sparse coding and picture reconstruction concurrently.
The authors in Ref. 32 provide an SAR image despeckling model based on a nonlinear hyper-
bolic-parabolic coupled partial differential equation (PDE). In this case, the edge variable is
calculated using a different equation, resulting in improved edge information in the despeckled
SAR images. The authors of Ref. 33 looked at some of the most used indicators for evaluating
edge preservation. Afterward, a new reference-free index is suggested. Speckled and despeckled
images use the ratio gradient to distinguish between two nonoverlapping areas on each side of
each pixel. Despeckling of SAR images using a bidimensional empirical mode decomposition
(BEMD)-based adaptive filtering approach is proposed by the authors of Ref. 34. SAR images
with high-frequency noise are first divided into bidimensional intrinsic mode function (BIMF)
levels using BEMD, and then the first BIMF level is filtered to remove the high-frequency noise.
CNNs based PolSAR despeckling has been presented in Ref. 35, and it makes use of a matrix
logarithm invertible transformation to make the polarimetric SAR (PolSAR) data easier to get
analyzed by CNN. Speckle noise is eliminated from a damaged images by using a residual learn-
ing technique, which involves training a CNN to detect these speckles. Filtering a single-look
speckled data set using the Shannon and Rényi entropies under G0 model was presented
in Ref. 36.

In Ref. 37, the authors suggest a unique truncated nonconvex nonsmooth model to reduce the
speckle noise in SAR pictures. Regularization and I-divergence integrity terms are also included
in the formula. Despeckling performance is considerably improved by replacing a single-stream
structure of convolutional layers with a multiple-stream structure to extract feature representa-
tions with multidirectional and multiscale characteristics, as shown in Ref. 38. To collect abstract
aspects of an image in a certain frequency and direction band, the Contourlet CNN (CCNN) is
developed with numerous separate subnetworks using the Contourlet technology. Using a com-
bination of a deep learning network with noise reference and a similarity-based block matching,
the authors of Ref. 29 have presented a new single-image speckling approach. CNNs are used in
this method’s denoising because they can handle tiny picture patches. Deeper CNNs have never
been used previously to reduce speckle in noisy SAR pictures, according to the authors of
Ref. 39. The ResNet model’s many skip connections are also used in the suggested architecture
of the authors. A method for applying skip connections has also been devised to ensure con-
sistency. To train the network more consistently, a hybrid loss function was devised. A new SAR
image despeckling method was developed by the authors in Ref. 40 to increase the performance
of an encoder–decoder CNN architecture. The smallest scale introduces a context block to
collect multiscale data. Using a blend of a revised despeckling gain and a total variation loss
function, the gradient descent technique is used to train the model. In Ref. 41, a weighted sparse
representation-based approach for despeckling SAR images is described. First, multiplicative
noise is transformed into additive noise via the homomorphic transformation. To acquire the
flexible dictionaries and sparse coefficients based on nonlocal self-similarity constraint, related
patches are clustered together in a second step. Coefficients are also subjected to weighted reg-
ularizations to boost efficiency. Finally, despeckling images may be generated using an expo-
nential transform. For SAR image despeckling, a transformer-based network was presented
in Ref. 30. An encoder-based on a transformer enables the proposed method to learn global

Singh, Shankar, and Diwakar: Review on nontraditional perspectives of synthetic aperture radar image. . .

Journal of Electronic Imaging 021609-6 Mar∕Apr 2023 • Vol. 32(2)



relationships between image areas, which improves despeckling performance. Synthetically pro-
duced speckled images are used to train the system end-to-end. SSD-SAR-BS, a self-supervised
deep learning approach based on Bernoulli-sampling-based self-supervised deep learning, was
suggested by the authors of Ref. 42 in response to recent work on self-supervised denoising. As a
result of training on actual SAR images, Bernoulli-sampled image pairs (input–target) were gen-
erated. It was after this that a network was trained on these pairings of images. To improve
network performance, a dropout-based ensemble was implemented.

In Ref. 43, an improved Frost filtering technique for SAR images is presented. By employing
Lee’s filter coefficient, the Frost filter model incorporates an adaptively controlled decay factor
for SAR images that better characterizes homogenous and edge portions of the image. With the
purpose of emphasizing sound suggestions for reasonable training, the authors in Ref. 44 evalu-
ated experimentally the influence of training set design on the effectiveness of SAR image
despeckling. For SAR image despeckling,45 presents a dilated residual shrinkage network. A
main network and a shrinking subnetwork are part of the suggested technique. Convolution and
residual learning are paired with soft thresholding to make up the core of the network. Within our
network, we have soft thresholding and shrinking. The goal of Ref. 46 is to suggest a multi-step
despeckling process: first, a CNN instructed under the fully developed speckle theory with a
numerical loss function is used for despeckling; second, the speckle noise is predicted by the
system for detecting the not fully developed regions where the system will generate artefacts via
a statistical technique and a ratio edge detector. The authors of Ref. 47 compare the advantages
and disadvantages of several training methodologies (synthetic, multitemporal, and hybrid).
Three datasets were used to train four CNN-based algorithms for evaluation. Each training
method has been tested on genuine SAR pictures to highlight the differences in performance
between them.

To improve speckle filtering and texture preservation at the same time in SAR images, a deep
encoder–decoder CNN architecture is presented in Ref. 48. The U-Net CNN has been adapted to
meet this goal and has been changed and optimized in accordance with it. An algorithm for
estimating speckle noise distribution and despeckled images has been reported in Ref. 49.
For SAR collections in a wide range of landcover situations, this method performs well since
it does not rely on any noise model. The authors of Ref. 50 developed a novel approach for
despeckling SAR images that uses a deep learning engine to do nonlocal filtering. Using non-
local filtering for SAR despeckling has shown to be quite successful. The underlying principle is
to use picture self-similarity to estimate the hidden signal. It is possible to estimate the target
pixel using pixel-wise nonlocal methods, which use weights based on patch-wise similarity mea-
surements. The paper51 provides a noisy reference-based SAR deep learning filter that uses com-
plementary photos of the same region taken at different times as training references to solve the
problem of speckle noise. Parameter-sharing CNN is used in Ref. 51 to better use the picture
information. The similarity of each pixel pair across the multiple photos is also exploited to
enhance the training process, which helps to decrease the training mistakes caused by changes
in land-cover between different eras. The coherent imaging approach of SAR provides SAR
images with intense and randomly dispersed speckle, which causes substantial interference
to later applications. To cope with the impacted images,52 suggest a network combining wavelet
characteristics to despeckled the images and then assess the outcomes.

The authors of Ref. 53 came up with the image of using a recursive deep CNN model to
remove speckles in SAR images. In the first place, the data-fitting and regularisation parts of the
SAR variational model are split up into two separate problems: a data-fitting block and a deep
CNN prior block, which are both separate problems. Finally, the gradient descent algorithm is
used to solve the data-fitting block, and a predenoising residual channel attention network that
uses dilation for the deep CNN prior block is used to train the network. The authors of Ref. 54
elaborate on the multilayer perceptron neural-network model for SAR image despeckling by
employing a temporal series of SAR images. Unlike previous filtering approaches, this method
may be taught using archival photos across an area of interest to understand the intensity features
of test images and then flexibly decide the values and criteria for image despeckling by employ-
ing a neural network for image despeckling. The authors of Ref. 55 recommended using pre-
trained CNN models trained on additive white Gaussian noise to overcome the issue of speckle
noise. The authors55 further employed a multichannel logarithm method with Gaussian
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denoising to incorporate such CNNs. It was hypothesized in Ref. 56 that SAR images may be
despeckled without the need of ground truth (despeckled images). Despeckled pictures are tradi-
tionally required for training in learning-based systems. Real-world situations are frequently
difficult to get the ground truth, though. To that aim, we provide a method for restoring speckled
pictures only using SAR data. Several various approaches to dealing with speckle noise are
examined by Ref. 57, depending on the speckle removal job and the availability of multitemporal
stacks of SAR data. As an alternative to the newly announced SAR speckle removal architecture,
the first approach uses a CNNmodel trained to eliminate additive white Gaussian noise from real
images. The authors in Ref. 58 proposed a wavelet thresholding-based SAR image despeckling
techniques using 2D-DWT. Here, speckled SAR image is first preprocessed using iterative
inverse variance-based nonhomomorphic filter. The low-frequency components are directed
to bilateral filter, and high-frequency components are directed to modified Bayesian thresholding
followed by interlevel method noise thresholding. The intralevel method noise thresholding is
applied as a postprocessing operation to get the final despeckled image.58 The main motive of
research59 is the identification of image counterfeiting using illumination discrepancies. The
suggested method measures the illumination qualities of various surfaces or objects inside
an image. The digital forensics algorithm finds illumination disparities in an image’s objects
and delivers findings distinguishing between actual and false images. The objective of
Ref. 60 is to construct an automated recognition model for the categorization of therapeutic
plants using IoT and machine learning (ML) methods to improve the conventional medicinal
system. Using Raspberry Pi 3 Model B+ (RPi) and the RPi camera, an intelligent system is
presented to detect images of Indian medicinal plants in real-time and disclose their unique
medicinal characteristics. The authors of Ref. 61 developed an enhanced energy-efficient
fuzzy-based cognitive radio scheme for internet of things (IoT) networks based on the limits
discovered in wireless communication networks. Cognitive radio-based heterogeneous wireless
sensor area network, the standard technique, is compared to the suggested protocol.

5 Comparative Analysis of SAR Image Despeckling Methods

This section mainly comparatively analyzes some of most cited and prevalent nontraditional
methods. It also discusses some of the standard despeckling methods as well. All the nontradi-
tional methods discussed are latest papers from 2018 to 2022. The comparison is done based on
two perspectives. First comparison is theoretical analysis that is done based on objectives, meth-
odologies, merits, and demerits. This comparison is shown in Table 1 of Sec. 5.1. Second com-
parison is done based on the analysis of qualitative and quantitative results. This is done in
Figs. 5 and 6, Tables 2 and 3 of Sec. 5.2. These visual results are comparatively assessed based
on factors like texture and edge preservation, speckle noise suppression, artifacts generation, etc.
This detailed comparison is performed on some prevalent methods.1,3,4,29,31,34,38,39,46,54,62–67

5.1 Theoretical Comparative Analysis

In this section, traditional and non-traditional despeckling methods are briefly compared on the
basis of objectives, methodology, merits and demerits, which is shown in Table 1.

5.2 Qualitative and Quantitative Comparative Analysis

Figures 5 and 6 show the despeckling result of some of efficient latest nontraditional
methods.1,3,4,29,31,34,38,39,46,54 This comparison is made based on the visual quality of despeckling
results and different metrics used for the performance analysis of these methods. The speckled
SAR images taken for reference for the despeckling demonstration are shown in Figs. 1(c) and
1(d). There is no specific algorithm to do this visual quality analysis. There are certain factors/
parameters based on which this comparative analysis is drawn such as no artifacts generation,
edges, and image boundaries preservation, avoid over smoothing and over sharpening, visibility
of low contrast objects should be maintained, texture preservation, smoothness in the homo-
geneous regions, and preservation of texture components in nonhomogeneous regions. Similarly,
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the quantitative analysis is shown in Tables 2 and 3 on Figs. 1(c) and 1(d), respectively, using
metrics like equivalent numbers of looks (ENL), noise variance (NV), coefficient of variation
(CV), and mean-squared error (MSE). ENL analyzes the smoothness in homogeneous areas. NV
tells the speckle noise content in image. CV analyzes the heterogeneous areas, and MSE deter-
mines the average difference between real speckle SAR image and speckled image. The com-
plete description of all these metrics and its formulation are properly explained in Ref. 1.

Figure 5 compares some of the latest nontraditional despeckling methods. The reference
speckled image is shown in Fig. 1(d) that is having the speckle noise variance = 0.1 (10%).
All the compared methods are executed on this speckled image. The results look similar in
Fig. 5 on the first look, but this difference can be better understood by zooming the image for
comparative analysis. On zooming the images of Fig. 5, it is found that Figs. 5(c) and 5(e) show
the best despeckling results based on edge preservation and details clarity. The despeckling
results of Figs. 5(g)–5(j) are comparatively weaker in comparison to other compared methods,
as blurring can be observed in Figs. 5(g) and 5(i), small edges distortion can be seen in Figs. 5(h)
and 5(j). Also, noise variance looks higher even after despeckling process, as distortion is clearly

Fig. 5 Despeckling results (a) 2018,1 (b) 2020,3 (c) 2021,4 (d) 2022,29 (e) 2022,31 (f) 2022,34

(g) 2021,38 (h) 2021,39 (i) 2021,46 and (j) 2019.54

Fig. 6 Despeckling results (a) 2018,1 (b) 2020,3 (c) 2021,4 (d) 2022,29 (e) 2022,31 (f) 2022,34

(g) 2021,38 (h) 2021,39 (i) 2021,46 and (j) 2019.54
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visible in the results. Some texture components are also lost in Figs. 5(i) and 5(j). The visual
quality of Figs. 5(a) and 5(b) are also satisfactory as speckle noise is reduced and fine details are
preserved. The fine details are well preserved in these cases. The despeckling results of Figs. 5(d)
and 5(f) are also satisfactory in terms of smoothness and no artifact generation. The noise sup-
pression is performed well, and fine details are also well preserved.

The result of compared despeckling methods looks quite similar in Fig. 6 as well. On zoom-
ing the images of Fig. 6, it is found that Figs. 6(c) and 6(e) show the best despeckling results
in terms of preserving smoothness and edge preservation in nonuniform areas. The despeckling
results of Figs. 6(g)–6(j) are comparatively weaker in comparison to other compared methods in
terms of texture preservation in heterogeneous areas. The speckle noise reduction is compara-
tively weaker than other methods, as degradation of fine details is clearly visible in visual results.

Table 2 Comparative despeckling analysis based on NV, MSE, ENL, and CV on Fig. 1(c).

Methods
NV

[Fig. 1(c)]
MSE

[Fig. 1(c)]
ENL

[Fig. 1(c)]
CV

[Fig. 1(c)]

Real speckled SAR image [Fig. 1(c)] 8.2946 — 2.0359 35.2937

1 2.9895 965.2654 2.6359 36.6254

3 2.3591 953.2314 2.8547 36.5142

4 1.3590 1068.1122 3.0213 36.3261

29 5.0271 759.3695 2.2345 37.6523

31 2.2613 1095.3265 3.1021 36.2135

34 4.6289 814.2315 2.2258 37.2514

38 3.9691 875.2643 2.3654 36.0002

39 6.4561 689.3279 2.0058 38.6352

46 6.5252 714.3262 2.1254 38.3251

54 6.0001 755.3269 2.0145 37.1210

Table 3 Comparative despeckling analysis based on NV, MSE, ENL, and CV in Fig. 1(d).

Methods
NV

[Fig. 1(d)]
MSE

[Fig. 1(d)]
ENL

[Fig. 1(d)]
CV

[Fig. 1(d)]

Real speckled SAR image [Fig. 1(d)] 7.9826 — 1.9568 34.5671

1 2.3968 913.2654 2.5625 35.5123

3 2.0059 936.5621 2.7515 35.4512

4 1.2580 1002.5565 2.9564 35.2547

29 4.8976 755.3912 2.1254 36.5140

31 1.9782 1029.3265 3.0021 35.1594

34 4.5897 798.3251 2.1189 36.1248

38 3.8978 851.2972 2.2658 35.9054

39 6.2678 680.3966 1.9965 37.5621

46 6.0258 700.2531 2.0321 37.2651

54 5.9867 725.6589 2.0096 37.0025
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Some edges are lost in Figs. 6(i) and 6(j) after despeckling. The overall appearance of Figs. 6(a)
and 6(b) are satisfactory as speckle noise is sufficiently reduced and edge components are well
preserved. The fine details are well preserved in both uniform and nonuniform regions. The
despeckling results of Figs. 6(d) and 6(f) are also satisfactory in terms of noise suppression and
fine texture preservation in nonhomogeneous areas.

Tables 2 and 3 compares the latest nontraditional methods1,3,4,29,31,34,38,39,46,54 using different
metrics, i.e., NV, MSE, ENL, CV on Figs. 1(c) and 1(d), respectively. In Table 2, NV (4) =
1.3591 that represents the best result in terms of noise reduction. NV (46) = 6.5252 that rep-
resents the comparative least optimal result in terms of noise reduction. The NVof real speckled
SAR image Fig. 1(c) = 8.2946. Based on NV values of,1,3,31 it can be easily said that speckle
reduction is well performed by these methods. The methods31,34,38 shows satisfactory result in
terms of speckle reduction. Based on MSE values in Table 2, it can be said that4,31 has higher
MSE values that show the significant difference between speckled and despeckled image results.
It represents effective despeckling process. The MSE values of Refs. 29, 39, 46, and 54 are lesser
in comparison to other methods value. These methods show weak despeckling process. The
despeckling results of Refs. 1, 3, and 38 are better as they yield better MSE values. The
CV value of speckled image is 35.2937. When the CV value of despeckled image is less than
CV value of speckled image, it represents poor preservation of fine details. When the CV value
of despeckled image is more than CV value of speckled image, it represents the introduction of
impairments. The CVof all compared methods is higher than CVof Fig. 1(c), this means details
are quite well preserved by these methods. But the increasing difference of CV is significant in
case of Refs. 29, 34, 46, and 54, therefore, in these method results, impairments can be observed.
Rest other method results are considered as best. Based on ENL values, it can be easily said
that3,4,31 presents the best results due to higher values. Rest of other method ENL values are
satisfactory.

In Table 3, quantitative analysis of despeckling methods in Fig. 1(d) is presented. The NVof
real speckled image is 7.9826. The methods that show the best performance based on NV values
are.4,31 After that, methods like1,3 also show great results. The results of29,34,38 are also satisfac-
tory. While rest of the methods shows below satisfactory results. Based on the MSE values,4,31

shows best performance. The methods1,3 also show great results, as good speckle content
removal can be observed.38 also shows satisfactory results. While the rest of the methods shows
below satisfactory results based on MSE values. Based on ENL values,31 show the best results,
and show least best results.39 While rest of the methods shows almost similar results. The CVof
speckled image is 34.5671. The CV values of all despeckling methods are greater than the CV
value of reference speckled image, but this increasing difference is not significant in Refs. 1, 3, 4,
31, and 38 so there is no introduction of impairments in the results. This increasing difference of
CV value is significant in the case of Refs. 39, 46, and 54, so here on zooming the output images,
some impairments can be observed. While rest of the methods shows satisfactory result because
of average difference of CV values.

The despeckling result evaluation of1,3,4,29,31,34,38,39,46,54 on the dataset (Fig. 1) was complex
task. There are various efficient nontraditional despeckling methods available in the present lit-
erature. Out of them, finding out such nontraditional despeckling methods that are efficient and
that can be implemented on the dataset (Fig. 1) was not that easy. The results evaluation of all the
selected nontraditional despeckling methods is done on real speckled SAR images, which
requires no hypothesis. Such methods are taken into consideration that can be compared using
similar metrics as presented in Tables 2 and 3. Such methods are taken into consideration that can
be compared based on naked eye visual analysis using certain factors discussed in subsection of
qualitative analysis. The nontraditional despeckling methods are similar in terms of their major
objectives, which is the elimination of speckle noise while preserving the fine details. The main
limitation of Ref. 1 is its high computational time. The main limitation of Ref. 3 is over-
smoothening. The main limitation of Ref. 4 is its high computational time. The main limitation
of Ref. 29 is that it could be extrapolated both by the ad hoc neural model or a pretrained one of
the same sensors. The main limitation of Ref. 31 is that somewhere in the despeckling process,
the artifacts are generated. The main limitation of Ref. 34 is its high execution time. The main
limitation of Ref. 38 is its high execution time and over-smoothening. The main limitation of
Ref. 39 is that the total information on convolutional features is lost. The main limitation of
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Ref. 46 is that it produces artifacts during the process, and the main limitation of Ref. 54 is its
slowness.

6 Conclusion

This review surveys various nonconventional SAR image despeckling methods and a few tradi-
tional methods as well. It further discusses the basics of SAR imaging, including scattering and
polarization effects, and problems present in SAR imaging. The compared methods range from
the year 2018 to 2022. A more specific comparative analysis has been done of some of the major
despeckling works in recent years. This comparison is done using theoretical analysis, quali-
tative analysis, and quantitative analysis. The theoretical analysis is done based on the objectives
set, methods used, and merits and demerits of these papers. The qualitative analysis is done based
on a certain set of factors that are discussed in the related section. The quantitative analysis is
performed using parameters like NV, ENL, MSE, and CV. The analysis is done in detail by
explaining all its perspectives. The survey performed on these methods mostly uses hybrid meth-
odology. This will help the researchers to understand the standard methods used in the discussed
papers and they will get an idea of how to design approaches for SAR image despeckling
methods.
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