
Hybrid synthetic data generation pipeline
that outperforms real data

Sai Abinesh Natarajan * and Michael G. Madden
National University of Ireland Galway, School of Computer Science, Galway, Ireland

Abstract. Fine-tuning a pretrained model with real data for a machine learning task requires
many hours of manual work, especially for computer vision tasks, where collection and anno-
tation of data can be very time-consuming. We present a framework and methodology for syn-
thetic data collection that is not only efficient in terms of time taken to collect and annotate data,
making use of free- and open-source software tools and 3D assets but also beats the state-of-the-
art against real data, which is the ultimate test for any similar-to-real approach. We test our
approach on a set of image classes from ObjectNet, which is a challenging image classification
benchmark test dataset that is designed to be similar in many respects to ImageNet but with a
wider variety of viewpoints, rotations, and backgrounds, which can make it more difficult for
transfer learning problems. The novelty of our approach stems from the way we create complex
backgrounds for 3D models using 2D images laid out as decals in a 3D game engine, where
synthetic images are captured programmatically with a large number of systematic variations.
We demonstrate that our approach is highly effective, resulting in a deep learning model with a
top-1 accuracy of 72% on the ObjectNet data, which is a new state-of-the-art result. In addition,
we present an efficient strategy for learning rate tuning that is an order of magnitude faster than
regular grid search. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.32.2.023011]

Keywords: synthetic data; ObjectNet; computer vision; image classification; deep learning;
learning rate.

Paper 220755G received Jul. 26, 2022; accepted for publication Feb. 14, 2023; published online
Mar. 16, 2023.

1 Introduction

Data, which are crucial to training machine learning models, can either be obtained from the real
world or synthesized. Synthetic data generation is an increasingly popular technique for training
deep learning models, especially in computer vision.1 A variety of methods can produce syn-
thetic data with varying degrees of realism, based on how closely their properties resemble those
of real data for the same task.2

Synthetic data hold a lot of promise as a cost-effective and scalable solution for data-hungry
deep neural networks. Autonomous land vehicle in a neural network implemented in 19893

utilized synthetic images from a simulator to train its neural network. However, synthetic data
often lack the diversity and richness of real data, so they are commonly used in conjunction with
real data in training sets.4–6

With the advent of sophisticated open source game engines and renderers, high-quality, high-
volume synthetic datasets have started to become more common. Another enabling factor is the
availability of packages and plugins like UnrealCV,7 which enables easier programmatic access
to generate images from game engines with ground truths.

An example of such a high-quality and high-volume dataset is the virtual Karlsruhe Institute
of Technology and Toyota Technological Institute (VKITTI) dataset4 that has seven times more
images than the original KITTI dataset8 that it was based on. It was also demonstrated in Ref. 4
that pre-training with virtual data followed by fine-tuning with real data can outperform training
on real data alone. More recent techniques, such as domain randomization,9 help generate larger
and more diverse images than VKITTI4 that perform well on their own, even without real images.

*Address all correspondence to Sai Abinesh Natarajan, s.natarajan3@nuigalway.ie

Journal of Electronic Imaging 023011-1 Mar∕Apr 2023 • Vol. 32(2)

https://orcid.org/0000-0003-0949-4732
https://orcid.org/0000-0002-4443-7285
https://doi.org/10.1117/1.JEI.32.2.023011
https://doi.org/10.1117/1.JEI.32.2.023011
https://doi.org/10.1117/1.JEI.32.2.023011
https://doi.org/10.1117/1.JEI.32.2.023011
https://doi.org/10.1117/1.JEI.32.2.023011
https://doi.org/10.1117/1.JEI.32.2.023011
mailto:s.natarajan3@nuigalway.ie
mailto:s.natarajan3@nuigalway.ie
mailto:s.natarajan3@nuigalway.ie


They do so by taking steps to bridge the reality gap between synthetic and real data. We do
something similar, but we create complex backgrounds for objects in a 3D virtual world, using
2D images pasted on the floor of that 3D world (as described in Sec. 3.3.1).

There has also been a paradigm shift in computer vision, where the practice of transfer
learning has become widely accepted as the norm for many high-level tasks, such as semantic
segmentation10–12 and object detection.13–15 We therefore exploit advances in open-source
plugins and game engines, combined with unique techniques in synthetic data generation to
perform state-of-the-art synthetic to real transfer learning, and make the following contributions.

1. We present a synthetic data generation framework with an approach of introducing back-
ground complexity to synthetic images, in addition to the ability to programmatically vary
rotation, lighting, backgrounds, and scale, making the resulting classifier very robust. We
have made our framework publicly available (https://github.com/saiabinesh/hybrid-synth),
which can be used to generate a dataset with any number of arbitrary classes. The dataset
used for this work can also be downloaded to reproduce our experiments directly.16

2. We test the efficacy of the collected synthetic data on a set of classes from the challenging
ObjectNet dataset2 and demonstrate that fine-tuning with synthetic data can outperform
fine-tuning with real photographs.

3. We evaluate the effect of various parameters in the synthetic data generation pipeline
through ablation studies.

4. We present an efficient learning rate (LR) tuning strategy that is robust to covariate shift,
helps set the LR 75× faster and converges 10× faster compared to regular grid search.

2 Related Research

2.1 Approaches to Generating Synthetic Data

For computer vision tasks, such as image classification, object detection, and semantic segmen-
tation, the different approaches to generating synthetic datasets can be classified as follows:

1. Cut and paste approach;
2. Realistic synthetic environment approach; and
3. Hybrid approach.

Cut and paste approach. It involves cutting and pasting foreground objects on to background
scenes, thus creating numerous combinations of synthetic images.17

Dvornik et al.18 used a dedicated convolutional neural network (CNN) to choose potential
bounding boxes where an appropriate object can be placed based on an object score for each box
in a given image. This resulted in an improved performance in VOC12.19

Wang et al.20 utilized a simpler approach, where foreground objects of a class were carefully
pasted on background images where a similar instance of that same class was removed. For example,
a teddy bear instance from one image is pasted on another image where a similar teddy bear was
removed. They called this instance switching, and the advantages were that context, shape and some-
times the scale also can be preserved to a certain extent. However, the major limitations of the cut and
paste approach, such as inconsistent lighting (between foreground and background), and the creation
of boundary artifacts remain unresolved. One exception is a complex pipeline involving geomet-
rically consistent cut and paste methodology combined with 3D-specific image perturbation that
improves upon state-of-the-art results in monocular 3D depth estimation21 on the nuscenes dataset.22

Realistic synthetic environment approach. A 3D environment with well-placed 3D objects
can provide a testing ground for various applications, particularly navigation and mapping.
There have been several works that created outdoor environments for training self-driving
cars23–26 and unmanned aerial vehicles.27–29

A notable dataset created using this approach is VKITTI,4 modeled after KITTI,30 an urban
self-driving dataset with ground-truth annotations of bounding boxes and semantic segmenta-
tion masks.

A popular dataset for urban semantic segmentation is SYNTHIA,31 which has data from a
virtual New York city for 13 urban classes, such as roads, buildings, and pedestrians. Both

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-2 Mar∕Apr 2023 • Vol. 32(2)

https://github.com/saiabinesh/hybrid-synth
https://github.com/saiabinesh/hybrid-synth


SYNTHIA31 and VKITTI4 used the Unity game engine,32 whereas there are other works includ-
ing DeepDrive33 and VIVID,34 which use the Unreal Engine to create their virtual environment.

The last couple of years has also seen a rise in high quality synthetic data generation
pipelines,35,36 which can produce realistic synthetic scenes, albeit with the limitation that they
require 3D scans of objects to work.

Hybrid approach. It combines synthetically generated 3D foreground objects layered on
background images taken from the real world. A good example is presented in Ref. 9, where
the synthetic images are composed by combining 3D models with random textures, against
a background of random images taken from the Flikr 8k.37

A 2022 approach called photorealistic neural domain randomization (PNDR)38 utilizes
a neural rendering technique, which learns a combination of modular neural networks to
generate high-quality renderings, randomizing different aspects of a scene including lighting and
materials while still preserving realism.

In our work, we use a simpler hybrid approach, as will be described in Sec. 3. Apart from
using only a limited set of nine images from Google Images, a distinguishing feature of our
approach is how we convert the 2D images into decal surfaces so that they integrate into the
environment in a more realistic fashion than Ref. 9, plus properties, such as surface brightness of
objects, can be varied to introduce greater diversity into the dataset.

2.2 Combination of Synthetic and Real Images

It has been shown in numerous instances39 that synthetic data alone is not useful to train general-
purpose models. Earlier, synthetic datasets were used to complement real datasets so that models
trained on such combined datasets can generalize well to real-world test data. This addition of
synthetic datasets for training, helped outperform models trained on real datasets alone.

In 2014, virtual human images from the video-game Half-Life 2 were used in conjunction
with a real dataset called INRIA40 for the task of pedestrian detection, and it was shown on
several benchmark datasets that this outperformed training with just INRIA.41 Synthetic humans
were generated with the help of 3D templates from Ref. 5 and shape information from Ref. 42
to generate a synthetic dataset called SURREAL.43 The authors beat the state-of-the-art
(approaches trained on real data only) on multiple tasks including body pose estimation and
depth estimation, by training with a combination of real and virtual data.

Synthetic data have been used in object detection starting from 2015, when Peng et al.6 used
CAD images to fine-tune an RCNN object detector44 and showed that synthetic images of
objects are useful when there is limited real data available, as in the Office dataset,45 where the
performance was better when trained on synthetic CAD images compared to webcam images of
the same objects.

The state-of-the-art dataset generator called Kubric46 released in 2022, built using Blender47

and PyBullet,48 can flexibly generate synthetic data for 11 different types of computer vision
tasks from 3D-NeRF49 to optical flow estimation. Even Kubric46 with all the flexibility and
scalability of its pipeline only generates synthetic datasets, which beat the state-of-the-art,
when used in conjunction with real data.

2.3 Pure Synthetic Data

Data from a virtual world were used to train a multiclass object detector50 that outperformed
state-of-the-art methods at the time, deformable parts model (DPM)51 and aggregate channel
features (ACF)52 on the PETS09-S2L1 challenge.53 They achieved the highest score on the pre-
cision metric even without using a pretrained network backbone and got competitive results on
other metrics, such as recall and false positive count. McCormac et al.,54 using their SceneNet
dataset, showed that pretraining purely on synthetic data for semantic segmentation resulted in
an improvement over pretraining on ImageNet when the final transfer learning task is segmen-
tation on real datasets.

Tremblay et al.55 achieved state of the art in pose estimation with six degrees of freedom,
using only synthetic images, utilizing a combination of domain-randomized, and photorealistic
images to train their pose estimator.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-3 Mar∕Apr 2023 • Vol. 32(2)



Similarly, Hinterstoisser et al.56 demonstrated that training on pure synthetic data can outper-
form training on real data. The detection works on a set of 64 retail objects under various poses,
heavy background clutter, partial occlusion, and illumination changes. However, their work relies
on obtaining high-quality 3D scans of objects to train an object detector. In 6D object detection,
PNDR,57 mentioned in Sec. 2.1 achieves state-of-the-art results using purely synthetic data.

2.4 ObjectNet

Popular datasets, such as ImageNet,58 have been a major driving factor in the advancement of
algorithms and network architectures. One of the newer ones is ObjectNet,2 which was designed
to be a difficult test-only dataset (as opposed to being used for both testing and training), and
to challenge standard practices for transfer learning, which do not work well on it. Some samples
from the ObjectNet paper2 are shown in Fig. 1.

Fig. 1 Sample chair images from (a) ImageNet and (b) ObjectNet (column 2), taken from Ref. 2
against (c), (d) our synthetic chair images. This highlights the challenging aspects of ObjectNet
(which are incorporated into our synthetic data): rotation, background, and viewpoints, compared
to the much simpler ImageNet images of chairs.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-4 Mar∕Apr 2023 • Vol. 32(2)



The leave-one-out contrastive learning (LooC)59 constructs separate embedding spaces for
each invariant feature. When tested on a subset of ObjectNet containing 13 classes, their LooC
network achieves 32.6% top-1 accuracy over a base benchmark of 30.9% using a supervised
linear classifier.

In context-gated-convolution (CGC),60 context-aware CNNs are created, where the weights
are modified based on a global context, allowing an improved extraction of representative local
patterns. Testing on ObjectNet, on a subset of 113 classes that are in common with ImageNet
classes, their CGC architecture improves on the baseline Resnet50 (29.35%) by 2.18%, achiev-
ing a top-1 accuracy of 31.53% on the 113 ObjectNet classes. This is comparable to the same
number of classes tested in the original ObjectNet paper.2

Big transfer (BiT)61 achieves 58.1% top-1 accuracy on ObjectNet, using large-scale pretrain-
ing and their internal dataset called JFT-300M, which has more than 1 billion labels spread over
more than 300 million images. As their dataset has not been made public, one cannot directly
compare against their work, let alone reproduce it or improve on it.

A huge attention-based transformer with two billion parameters62 pretrained on the JFT-3B,
an even larger version of JFT-300M61 dataset, achieved 70.53% on ObjectNet. Contrastive
language-image pretraining,63 which uses natural language supervision in the way of text-image
paired training, manages to achieve 72.3% top-1 accuracy on ObjectNet. A similar method called
locked-image text tuning,57 where the image models are locked after pretraining and the text
models are tuned for the task at hand, achieves 81.1%, albeit with the limiting requirement
of JFT61 pretraining and millions of ground truth image-text pairs.

3 Methodology

Our methodology includes the following steps, which will be described in the sections that
follow.

• A test dataset with a subset of classes are selected for experiments.
• 3D models for the selected classes are sourced and downloaded from various 3D market-

places, namely CGtrader,64 TurboSquid,65 and free3D.66

• Multiple copies of each 3D model are spawned, modified, and placed inside a virtual
environment of a 3D game engine.

• Images of those models are captured using perspective projection and placed inside the
respective folders, which then become labels for image classification.

• The synthetic data thus created are then used for fine-tuning a pretrained deep neural
network.

• For comparison purposes, real data for the selected classes are collected by bulk-down-
loading Google Images and then the same pretrained network is fine-tuned on the real data.

3.1 Test Dataset

There are 113 classes that overlap between ObjectNet and ImageNet. We organized those classes
into categories by their purposes, such as chair and bench (category: furniture); cell phone
and laptop (electronics); and vase, lampshade (home décor). We then randomly sampled one
class from each of the top 10 categories, making 10 class labels in total, which we refer to
as ObjectNet_subset. They are: mug, drill, umbrella, TV, cell phone, chair, bicycle, tennis racket,
stuffed animal, and vase.

3.2 Toolchain

For each of our classes, we downloaded freely available 3D models from 3D marketplaces:
TurboSquid, CGTrader, and free3D. Based on availability of models and the complexity of each
object (some objects have more intraclass variability than others), a varied number of 3D models
were downloaded for each object class. For instance, different umbrellas may vary in size, color,
and slightly in design, and so do tennis rackets; but other classes such chairs vary far more widely
in their types, from swivel chairs to basic plastic ones. Table 1 shows the number of 3D models

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-5 Mar∕Apr 2023 • Vol. 32(2)



downloaded and used for each object class. Geometry for the 3D models is meshes, a form of
boundary representation.

We then imported those models into the Unreal Engine (v4.24),67 a 3D game engine that
allows 3D modeling, animation, and game development, along with support for plugins and
Python scripting. We used the in-built Unreal Python plugin for scripting the spawning, rotation,
and scaling of 3D models; modifying the lighting; and changing object backgrounds. In Unreal,
we used the AirSim plugin68 to capture images from predefined angles and distances from each
object. Airsim enables API controls of virtual cars and RAVs inside Unreal Engine and has been
specifically designed to enable research in autonomous vehicles, computer vision, and reinforce-
ment learning.

3.3 Experimental Setup

3.3.1 Background and object layout

Multiple copies of each object are laid out in a rectangular grid on the Unreal environment floor.
Each copy of the object has variations in rotation, scale, and background surfaces. Each object
is also surrounded by a floor material in the shape of a big square, which would serve as the
object’s background when photographed from above. There is also point light above each object
for illumination. A screenshot of some of the objects with simple backgrounds (such as wooden
surfaces) and point lights above them are shown in Fig. 2.

Decals. We also create more complex backgrounds using decals as mentioned in Sec. 2.1.
Decals in the real world are special papers with design that are pasted onto surfaces, such as glass
and metal. Decals inside an Unreal engine are analogous to real-world decals in that they are
materials that can be wrapped around 3D polygons. We create decals out of photographs sourced
from the Internet and wrap them around huge square tiles on top of which objects are placed.
A screenshot of a diverse array of complex decal-wrapped background tiles is shown in Fig. 3.

3.3.2 Lighting

Every point light is applied from a random position in a 2 m × 2 m2, 2.5 m above ground level.
That point light has a random color in the red, green, and blue (RGB) color channels between the
ranges 100 to 255 (e.g., white light has RGB channels 255, 255, 255). The light bulb icons
represent the point lights above each object. In order to avoid point light colors mixing with
each other, the objects and their respective point lights are placed far apart in the virtual envi-
ronment as shown in Fig. 4.

Table 1 Count of 3D models used for each class.

Object label Count

Bicycle 5

Cell phone 4

Chair 5

Drill 4

Mug 11

Stuffed animal 6

Tennis racket 3

TV 3

Umbrella 4

Vase 20

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-6 Mar∕Apr 2023 • Vol. 32(2)



Apart from point lights, which correspond to object illumination, there is also a default
“skylight” in an Unreal Engine that corresponds to scene illumination. The intensity of the scene
illumination is set to a minimal level so that even when the random point light intensities become
too low, the objects are visible enough in low-light conditions. There are also other scene var-
iations that are being applied, namely saturation and contrast. Floor decals are applied evenly to
all objects multiplicatively, i.e., each object has 10 different copies with 10 different decals—
whereas saturation and contrast settings are only applied on subsets, i.e., the entire dataset is
divided into subsets and a combination of the following saturation and contrast settings are
applied on each subset:

• color saturation: three settings of 50%, 100%, and 150%
• contrast: two settings of 100% and 150%.

This is because saturation and contrast result in minor visual changes, and applying such
settings multiplicatively would make the resulting dataset exponentially larger without adding
as much visual variation within the dataset.

Fig. 3 A top-down screenshot of objects placed (close together for illustrative purposes) on decal
tiles. When pictures of those objects are captured, they have a complex background with a lot of
clutter, as shown in Fig. 5. A progressively zoomed in version of the actual tiles and objects are
shown in Fig. 4.

Fig. 2 Objects and 2D background tiles laid out in an Unreal engine, in a rectangular grid-like
fashion with the point lights above them, shown as light-bulb icons. The objects in the centre
of the square tiles are so small compared to the tiles, they are not visible. The reason for the size
difference is that the tiles have to cover a large area when the pictures are taken from the top-down
but offset from the centre.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-7 Mar∕Apr 2023 • Vol. 32(2)



3.4 Capture of Synthetic Images

The second phase is image capture, done using AirSim after placing all the objects. At each
object location, the images are captured at four different viewpoints, as shown in Fig. 5
where a stuffed animal is photographed from the top at height h, then staying at h, making
the following displacements along the x and y axes: ð0; dÞ, ðd; 0Þ, ðd; dÞ. Based on the
displacements, the camera angles are also adjusted so that they face the centre of the object
at all times. The synthetic images captured contain only two-dimensional information of
the decal backgrounds. When the camera is rotated and photographs are not taken directly
from top-down, the three-dimensional information of the 2D backgrounds is not accurate.
Yet, our results in Sec. 4.2 show that the model performs well despite this loss of 3D
information.

To view the objects in the virtual environment on top of the backgrounds on their actual scale
and spacing, a mug is photographed starting from the default height and then progressively
zoomed out until some neighboring background tiles are visible, as shown in Fig. 4. The tiles
and objects are far apart to prevent the light rays of nearby point light sources from mixing with
each other. During the batch capture of images, parameters, such as image resolution, gamma,
and field of view of cameras can be easily modified through a json file as mentioned in our
Github page (https://github.com/saiabinesh/hybrid-synth).

3.5 Collection of Real Data

To collect real data, a Google Chrome extension called “Download All Images69” to batch-down-
load images was used. For every search query, which is the name of the object class, e.g., “drill,”
all the search results from Google Images are downloaded after scrolling down to the end of the
page, until the “end of the results” message is displayed. The extension helps download all the
images displayed in the current Google images page. Finally, after scrolling down to the very end
and downloading the images, they are manually inspected to see if there are some incorrect
images, such as thumbnails and wrong results.

Fig. 4 The picture of a mug on a complex tile taken from the (a) actual height, (b) moving clock-
wise, and (c) progressively zoomed out, until the objects are no longer seen and then finally the
neighboring tiles are visible, marked with red arrows for clarity.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-8 Mar∕Apr 2023 • Vol. 32(2)

https://github.com/saiabinesh/hybrid-synth
https://github.com/saiabinesh/hybrid-synth


3.6 Testing on ObjectNet

We choose ResNet15270 as our backbone architecture, as it is a well-researched and popular
architecture in the computer vision community, with good baseline performance figures for
many of the common computer vision tasks. It has also been one of the primary networks
benchmarked by the authors and creators of ObjectNet.2 After the collection of both synthetic
and real data, a ResNet15270 backbone CNN (pretrained on ImageNet) is fine-tuned on
these respective images and the top-1 accuracy for both the synthetic and real data are
calculated.

3.7 Learning Rate Tuning

Learning Rate (LR) is one of the most important hyper-parameters to tune, and it can be inferred
from Fig. 8 that LR significantly affects the performance of Resnet152 on the ObjectNet dataset
(up to 40% points difference in validation accuracy between LRs). In this section, we explain in
detail our LR tuning strategy, which involves taking an upper bound LR value from an LR range
test and using that in an exponential StepLR decay scheduler. We elucidate our heuristics to
calculate the optimal parameters for the decay schedule.

3.7.1 LR range test

For LR tuning, we start with the LR range test,71 which can be described as follows.

• For very few iterations, start training with a very low LR value and increase the LR in
minibatches.

• Plot the loss value at each iteration, against the LR.
• Select the highest LR before the loss value diverges.

Fig. 5 A stuffed animal 3D model pictured in four different angles.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-9 Mar∕Apr 2023 • Vol. 32(2)



We modify the above method, wherein we calculate validation loss (instead of the training
loss) on the entire validation set, for every fixed number of minibatches. Doing this ensures that
any kind of covariate shift (difference in distribution between train and test data) is accounted for
and the LR is tuned for a validation set that resembles the distribution of the test set.

3.7.2 Parameters for StepLR

We take the values from LR range test and use it in conjunction with an exponential decay
schedule for LR, also known as “StepLR,” because it gave better top-1 accuracy. StepLR consists
of decaying the LR in each step by multiplying the previous LR by the decay rate γ. We combine
the range test from the CLR policy and the standard exponential decay policy to create a better-
performing LR strategy. We also calculate other parameters, such as the LR decay factor γ and
the step size x for the StepLR schedule. This LR tuning strategy is a part of our methodology.
The steps for the strategy can be summarized as shown as follows.

• Decide the range of LRs to test within. We select a wide range of LRs between 0.1 (which
is considered high in most cases) and 1 × 10−7.

• Based on batch size and the dataset size (Nd), calculate the rate of increase of LRs so that
the LR goes from the lowest to the highest value within two epochs, for every n iterations.

• Plot the loss value at each iteration.
• Take the LR corresponding to the lowest loss value. Divide that by 10 and make the upper

bound of the LR Lupper. Division by 10 makes sure that we capture the LR corresponding to
the steepest gradient right before the lowest loss value is reached.

• The lower bound of the LR Llower ¼ Lupper∕6 as prescribed by Smith,71 a policy that has
been widely adopted,72 validated,73 and reviewed74 many times since its discovery in 2017.

• Use standard SGD with StepLR schedule, with step size x, and decay rate γ.
• The values for x and Nepochs (the total number of epochs to train for) can be obtained by

calculating from the following equations:

EQ-TARGET;temp:intralink-;e001;116;391x ¼ maxðintðNiter∕NdÞ; 1Þ; (1)

where Niter is the number of iterations between x epochs and Nstep is the number of steps in
the StepLR schedule.

EQ-TARGET;temp:intralink-;e002;116;336Nepochs ¼ Nstep × x; (2)

where Niter ¼ 10;000, Nstep ¼ 15, and γ ¼ 0.8874, as will be explained below.

Here, Niter and Nstep are the constants that are empirically determined. The optimal Niter is set
at 10,000 because reducing the LR more frequently than once every 10,000 iterations caused
divergence in loss value. Nstep ¼ 15 makes sure that for larger datasets with more than 10,000
iterations per epoch, the LR is reduced gradually every epoch for a total of 15 epochs. The
exponential decay rate γ is calculated as shown as follows:

EQ-TARGET;temp:intralink-;e003;116;222γNstep ¼ Llower∕Lupper; (3)

EQ-TARGET;temp:intralink-;e004;116;177 ¼> γ ¼ ðLlower∕LupperÞð1∕NstepÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;153Nstep ¼ 15; (5)

EQ-TARGET;temp:intralink-;e006;116;130Llower∕Lupper ¼ 6 (6)

(from Ref. 65).
Therefore, γ ¼ ð1∕6Þ1∕15 ¼ 0.887407817.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-10 Mar∕Apr 2023 • Vol. 32(2)



4 Results

4.1 Efficiency of Synthetic Data Generation

The time taken to collect real data using Google Images includes the time taken to perform the
following steps:

• query the object label;
• scroll until the end of results is reached;
• batch download all the images for that object; and
• curate that data to exclude incorrect and inappropriate images.

From our experiments, this process took an average of 37.5 minutes per class, which equates
to 62.5 min per 1000 images. This is the best case scenario where one just has to query and
download the images that are already indexed on the web by Google Images. A lot of times
in real life, the effort and time involved are higher, as it involves having to acquire or find the
actual objects belonging to that label, then photograph those objects.

Collection of synthetic data involves the following steps:

• placing object 3D models in an Unreal engine: 40 min
• capturing images using AirSim plugin: average of 63.5 s per 1000 images.

Placing objects took 40 min for a dataset of 31,200 images (76.92 s per 1000 images). The
overall time taken for placing objects and capturing images was 2.34 min per 1000 images.
Synthetic data are not only more than 10× faster to collect as shown in Table 2 but also easier
to prototype and create new versions of data.

4.2 Top-1 Accuracy

4.2.1 Against state-of-the-art

Our method has achieved the highest top-1 accuracy on ObjectNet data so far, as shown in
Table 3. (This is excluding works that use huge transformers62 trained on proprietary
datasets61 and other works that use natural language supervision.57) The closest comparable work
is LooC,59 which achieves 32.6% top-1 accuracy. CGC60 uses context-aware CNNs, improving
over the aforementioned Resnet50 baseline of 29.35% by 2.18% points, achieving a top-1

Table 2 Time taken. Synthetic data takes 11× less time.

Data Average time taken per 1000 images

Real 62 min 30 s

Synthetic 2 min 20 s

Table 3 Top-1 accuracy of the state-of-the-art in ObjectNet classifi-
cation, with the third column showing the number of test classes from
ObjectNet used in each of the works.

Model Top-1 accuracy (%) Test set classes

LooC59 32.6 13

CGC60 31.5 113

BiT61 58.5 113

Ours 72.0 10

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-11 Mar∕Apr 2023 • Vol. 32(2)



accuracy of 31.53% on 113 ObjectNet classes. BiT61 achieves 58.1%, using large scale pretrain-
ing using their internal dataset called JFT-300M dataset,75 with more than 300 million images.

4.2.2 Against real data scraped from Internet

We were also able to beat real data collected for our specific subset of classes as outlined in
Sec. 3.5. We fine-tune the final layer of a pretrained Resnet152 backbone on both Real10
and Synthetic10_v4. Using our LR strategy, the upper bound LR for Real10 was fixed at
4.018 × 10−4, and the upper bound for Synthetic10_v4 was fixed at 2.6778 × 10−5. Early stop-
ping was implemented with a patience value of 5, where no improvement in validation accuracy
for five epochs will terminate the training. Some other common training parameters that we used
for both synthetic and real images are as follows:

• Input data transforms:

– Random crop: 224 × 224

– Normalize: based on ImageNet mean and standard deviation
– Horizontal flip

• Batch size: 4
• Momentum: 0.9

When we tested both models on ObjectNet_subset, the Synthetic10_v4 model outperformed
the top-1 accuracy of Real10 by more than 3% points, as shown in Fig. 6.

Night-time images. To test night-time and low-light performance of our model trained on
synthetic data, we created the Objectnet_night subset, some samples of which are shown in Fig. 7.

We then tested the top-1 accuracy on the Objectnet_night subset for both the Synthetic10_v4
and the Real10 models. These results tabulated in Table 4 show that our synthetic model loses
only seven tenths of a percentage point when going from the full dataset to night subset, whereas
the Real10 model loses 18.9% points. This is because in our data generation pipeline we
included broad range of lighting variations as mentioned in Sec. 3. This includes minimum
ambient scene lighting and random point light intensities that can go very low.

4.3 Learning Rate Scheduling and Training Strategy

We use the validation set of the Real10 Google Images dataset to tune LR. The graph in Fig. 8
shows validation accuracy at the end of each epoch up to 50 epochs, for six different LRs, on the
same version of synthetic data. The LRs chosen for this graph are 1 × 10−2, 1 × 10−3, 1 × 10−4

up to 1 × 10−7. We stopped after 50 epochs because none of the models were showing evidence
of further improvement by then.

Fig. 6 Top-1 accuracy of models trained on real versus synthetic data, when tested on
ObjectNet_subset.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-12 Mar∕Apr 2023 • Vol. 32(2)



The effect of LRs on convergence is even more pronounced on the extremes where very low
LR of 1 × 10−7 is very slow to learn (improving 0.44% per epoch), compared to 1 × 10−6 (1.6%
per epoch). Similarly, the highest LRs cause divergence in learning and a subsequent decrease
in the validation accuracy. The curve of 1 × 10−2 starts at 10.4% and gets back to 10.2% at the
end of 30 epochs with very little learning in between, with 1 × 10−3 even decreasing in accuracy
compared to the first epoch. We postulate that the decrease in performance is because high LRs

Table 4 Top-1 accuracy of models trained on real and synthetic data
on Objectnet10 dataset and the Objectnet_night subset with only
night-time and very low-light test images.

Synthetic10_v4 (%) Real10 (%)

Objectnet_10 72.0 68.2

Objectnet_night 71.3 49.3

Fig. 7 Samples of a (a) bicycle, (b) drill, and (c) mug from the Objectnet_night subset we created
out of the Objectnet_10 test set by filtering only night-time and other similar low-light images.

Fig. 8 Validation accuracy at the end of each epoch plotted against epochs.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-13 Mar∕Apr 2023 • Vol. 32(2)



overshoot the minima and settle on solutions that are in less optimal regions of the weight space.
Accordingly, this graph demonstrates the importance of selecting a suitable LR in affecting the
maximum accuracy potential and the convergence speed of the network.

Also Table 5 shows the effectiveness of our strategy compared to cyclical learning rate
(CLR)71 and manual tuning. Our top-1 accuracy shows a nearly 30% increase to manual tuning
and also beats CLR by 16%, when using the same LR.

A standard parameter search takes at least 30 epochs of training to monitor the learning
curve for different LRs to fix one value. Case in point, a typical LR search with logarithmically
increasing LRs of 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, and 1 × 10−2, each run for
30 epochs, would take a total of 180 epochs to tune and set the LR schedule as opposed to two
or three epochs. This equates to time/resource savings between a factor of 180/3 and 180/2 in this
case, i.e., an average saving of 75×, similar to that of CLR, while achieving better accuracy. It is
worth mentioning that our method resulted in higher accuracy of 72% compared to a standard
grid search followed by stochastic gradient descent.

4.4 Synthetic Data Generation Parameters

Inspired by studies, such as Refs. 9, 56, and 76, many variations including point lights, image
saturation, and contrast were included minimally from the beginning. But to what extent each
parameter needs to be varied, was an open question demanding to be answered.

Consider the case of lighting. In a previous study9 that used an Unreal Engine, random point
lights with random intensities were shown to be a major factor in contributing to the performance
of their object detector. But the optimal range of intensity and color variations of the point lights
are unknown.

To study the effect of each of those variations, we started with a minimal number of variations
(two or three) in each factor to keep the final dataset size and the Unreal environment at a man-
ageable level (five variations in ten factors for each object would result in a dataset size of 510).
Then we incrementally tuned a combination of factors to monitor the performance improvement,
if any, and decided to keep or discard those factors and/or its additional variations. The variations
that caused the most improvement in the top-1 accuracy are listed in Table 6.

As shown in Table 6, complex backgrounds combined with point light variations in intensity
and color, improved the accuracy by 27% points. The complex backgrounds to the objects were

Table 5 The difference in parameters and accuracy when using manual tuning or CLR71 versus
using our strategy.

Strategy LR tuning metric LR Gamma Step size Top-1 accuracy (%)

Manual tuning Training loss 4.00 × 10−5 0.87 10 43.4

CLR71 Validation loss 2.68 × 10−5 NA NA 55.6

Ours Validation loss 2.68 × 10−5 0.91 1 72.0

Table 6 Model versions and the features added. v1: basic version with simple 90 deg rotations,
and variations in point lights, contrast, and saturation; v2 and v1 with more number of 3D models;
v3: random rotation in the range (−45 deg, 45 deg) on all objects, more point light variations and
complex backgrounds from Google Images; v4 and v3 with multiple scale images.

Version Number of models No. of floors Total dataset size Top-1 accuracy (%)

v1 42 1 2688 22.6

v2 66 1 4224 33.4

v3 65 10 10,400 60.8

v4 65 10 31,200 72.0

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-14 Mar∕Apr 2023 • Vol. 32(2)



downloaded from Google Images and scripted as decals to the floor of the Unreal engine.
An example of a chair, laid out on the default grey floor of the Unreal engine, and on three
other background images embedded on the floor, is shown in Fig. 9.

In addition to the image capture angles (which simulate rotations), random object (around all
three axes) in the range of (−45 deg, 45 deg) also boosted the accuracy because image capture
angles are fixed and so the random rotations help capture even more varied views of the objects.
So did having images of objects in multiple scales; v4, which is v3, but added with the same
pictures taken from multiple scales results in a 11.2% points as seen in Table 6. This was simu-
lated by moving the virtual drone proportionally closer and away from the object when taking the
pictures, i.e., to simulate zooming in and out, the camera on the virtual drone is moved closer and
away from the object, respectively.

4.5 Ablation Studies

Although the incremental approach detailed in the previous section helped broadly understand
the effect of various parameters on the performance of each feature added to the synthetic data,
an ablation study is necessary to more accurately quantify loss of performance if each of those
individual features were removed.

The limitation of this ablation study is the resultant decrease in the dataset size if the dataset
was generated without that particular feature. For example, the overall dataset size is 31,200
images. This included 3120 images from each of the 10 backgrounds, including the default
grey background. When nine of the complex backgrounds were removed from the data gener-
ation process, the resulting dataset became 10× smaller owing to the number of backgrounds
reducing from 10 to 1. To combat this limitation, each of the smaller datasets resulting from
the feature removals was duplicated to match the size of the full featured dataset size
(31,200 images).

It can be seen from Table 7 that the most important feature that contributed to the perfor-
mance was complex backgrounds, with a 35.5% points decrease when just the default

Fig. 9 Sample images of a chair in four different backgrounds including the Unreal default gray.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-15 Mar∕Apr 2023 • Vol. 32(2)



backgrounds were used. The second most important feature is rotations, which when removed,
achieved only a 44.2% accuracy, which is a 28%-point-decrease. The remaining two major
features of point light colors and multiple scales caused 12.6% and 11.1% point reductions in
accuracy, which are smaller but nonetheless substantial.

4.5.1 Generalization performance

To test whether the generalization performance was reduced due to the fine-tuning on synthetic
dataset, we first tested the off-the-shelf ImageNet pretrained Resnet152 network on the subset
of classes we call ImageNet10, which includes just a subset of ImageNet containing the
10 classes of our experiment. We then compared that vanilla network against the same network
fine-tuned on our synthetic data, and the top-1 accuracy results from those experiments are listed
as follows:

1. Vanilla Resnet152: 87.9%
2. Synthetic data fine-tuned Resnet152: 89.8%

This shows that taking the network that has been trained on ImageNet and fine-tuning with
synthetic data not only increases the performance on ObjectNet but also increases it slightly
on ImageNet as well. The fact that the top-1 accuracy did not decrease on ImageNet data dem-
onstrates that synthetic data generated using our hybrid approach helps counter the effect of
catastrophic forgetting and does not decrease generalization power of a network in the image
classification task.

5 Conclusions

We have successfully tackled the very challenging ObjectNet dataset by training on purely syn-
thetic data and managed to outperform real data on it, a feat that only two other works have
achieved to date.38,56 We have also beaten the state-of-the-art CNN classification performance
for ObjectNet, with our 72% top-1 accuracy. We have also demonstrated with ablation studies
(in Sec. 4.5) that the most important contributing factor (with 35% points) to our performance is
the complex backgrounds created using our novel decal method. Moreover, the network trained
on our synthetic data generalizes well to ImageNet also, as shown in Sec. 4.5.1.

Our entire synthetic data generation pipeline is publicly available (https://github.com/
saiabinesh/hybrid-synth) and so is our dataset16 so that this research can be reproduced,
extended, or repurposed for different tasks.

We have inferred in Sec. 4.1 that it is 11× more economical in terms of time and effort to
collect and preprocess synthetic data using our pipeline than to batch download preindexed real
data for image classification. In addition, we have presented an LR adjustment strategy, which is
75× faster to tune, and 16% points more accurate than standard CLR71 in tackling ObjectNet
using synthetic data (refer to Sec. 4.3).

Table 7 Ablation studies with comparison against the full dataset with no features removed.

Feature removed Top-1 accuracy (%) Comments

No features removed 71.9 Full dataset with all features

Complex backgrounds 36.4 Used default gray background

Rotations 44.2 Just took pictures from top-down angle and object
at one position

Point-light color 59.3 No colors on point lights

Multiple scales 60.8 Achieved by taking the pictures at multiple heights
0.6, 1, and 1.4 times the height

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-16 Mar∕Apr 2023 • Vol. 32(2)

https://github.com/saiabinesh/hybrid-synth
https://github.com/saiabinesh/hybrid-synth
https://github.com/saiabinesh/hybrid-synth


6 Discussion and Future Work

Although our technique has proven effective on ObjectNet, the effectiveness of it might depend
on the availability and quality of the 3D models. Some models do not import correctly and may
need to be corrected for things, such as object pivot and surface normals, requiring additional
time and effort.

Synthetic data may be even more efficient in tasks, such as object detection and semantic
segmentation, where annotating real data is much harder, requiring the need to hand label or
draw polygons, bounding boxes, etc. That is something that we are pursuing at the moment
and could be a good candidate for future work.

Acknowledgments

This publication has emanated from research supported in part by a research grant from Euro-
pean Union’s Horizon 2020 Research and Innovation Program (Grant No. 700264] (ROCSAFE)
and a research grant from the Science Foundation Ireland (SFI) (Grant No. SFI/12/RC/2289_P2)
and co-funded by the European Regional Development Fund (Insight Centre for Data Analytics).
The authors would like to acknowledge the Irish Centre for High-End Computing (ICHEC) for
the provision of computational facilities and support. For the purpose of Open Access, the
authors have applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission. The authors have no relevant financial interests in the
manuscript and no other potential conflicts of interest to disclose.

References

1. S. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization and Its
Applications, Springer International Publishing (2021).

2. A. Barbu et al., “Objectnet: a large-scale bias-controlled dataset for pushing the limits of
object recognition models,” in Adv. in Neural Inf. Process. Syst., H. Wallach et al., Eds.,
Vol. 32, Curran Associates, Inc. (2019).

3. D. A. Pomerleau, “ALVINN: an autonomous land vehicle in a neural network,” Tech. Rep.,
Carnegie Mellon University Artificial Intelligence and Psychology (1989).

4. A. Gaidon et al., “Virtual worlds as proxy for multi-object tracking analysis,” in Proc. IEEE
Conf. Comput. Vision and Pattern Recognit., pp. 4340–4349 (2016).

5. M. Loper et al., “SMPL: a skinned multi-person linear model,” ACM Trans. Graphics
34(6), 1–16 (2015).

6. X. Peng et al., “Learning deep object detectors from 3D models,” in Proc. IEEE Int. Conf.
Comput. Vision, pp. 1278–1286 (2015).

7. W. Qiu et al., “Unrealcv: virtual worlds for computer vision,” in Proc. 25th ACM Int. Conf.
Multimedia, pp. 1221–1224 (2017).

8. A. Geiger et al., “KITTI dataset,” March 20, 2012, http://www.cvlibs.net/datasets/kitti
(accessed 12 December 2021).

9. J. Tremblay et al., “Training deep networks with synthetic data: bridging the reality gap by
domain randomization,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit.
Workshops, pp. 969–977 (2018).

10. L.-C. Chen et al., “Deeplab: semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal. Mach. Intell.
40(4), 834–848 (2017).

11. K. He et al., “Mask R-CNN,” in Proc. IEEE Int. Conf. Comput. Vision, pp. 2961–2969
(2017).

12. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 3431–3440 (2015).

13. R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vision, pp. 1440–1448
(2015).

14. S. Ren et al., “Faster R-CNN: towards real-time object detection with region proposal
networks,” IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016).

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-17 Mar∕Apr 2023 • Vol. 32(2)

https://doi.org/10.1109/CVPR.2016.470
https://doi.org/10.1109/CVPR.2016.470
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1109/ICCV.2015.151
https://doi.org/10.1109/ICCV.2015.151
http://www.cvlibs.net/datasets/kitti
http://www.cvlibs.net/datasets/kitti
http://www.cvlibs.net/datasets/kitti
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2016.2577031


15. A. Sharif Razavian et al., “Cnn features off-the-shelf: an astounding baseline for recogni-
tion,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit. Workshops, pp. 806–813
(2014).

16. S. A. Natarajan and M. G. Madden, “Hybrid synthetic data that outperforms real data in
ObjectNet,” IEEE Dataport, December 18, 2021, https://dx.doi.org/10.21227/x84r-vh21
(accessed 2 January 2022).

17. D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: surprisingly easy synthesis for
instance detection,” in Proc. IEEE Int. Conf. Comput. Vision, pp. 1301–1310 (2017).

18. N. Dvornik, J. Mairal, and C. Schmid, “Modeling visual context is key to augmenting
object detection datasets,” in Proc. Eur. Conf. Comput. Vision (ECCV), pp. 364–380
(2018).

19. M. Everingham et al., “The Pascal visual object classes (VOC) challenge,” Int. J. Comput.
Vision 88(2), 303–338 (2010).

20. H. Wang et al., “Data augmentation for object detection via progressive and selective
instance-switching,” arXiv:1906.00358 (2019).

21. Q. Lian et al., “Exploring geometric consistency for monocular 3D object detection,” in
Proc. IEEE/CVF Conf. Comput. Vision and Pattern Recognit., pp. 1685–1694 (2022).

22. H. Caesar et al., “nuScenes: a multimodal dataset for autonomous driving,” in Proc. IEEE/
CVF Conf. Comput. Vision and Pattern Recognit., pp. 11621–11631 (2020).

23. B. Paden et al., “A survey of motion planning and control techniques for self-driving urban
vehicles,” IEEE Trans. Intell. Veh. 1(1), 33–55 (2016).

24. S. Milz et al., “Visual slam for automated driving: exploring the applications of deep learn-
ing,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit. Workshops, pp. 247–257
(2018).

25. H. Lategahn, A. Geiger, and B. Kitt, “Visual slam for autonomous ground vehicles,” in IEEE
Int. Conf. Rob. and Autom., IEEE, pp. 1732–1737 (2011).

26. T. Fossen, K. Y. Pettersen, and H. Nijmeijer, Sensing and Control for Autonomous Vehicles,
Springer (2017).

27. C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for uavs: current
developments and trends,” J. Intell. Rob. Syst. 87(1), 141–168 (2017).

28. J. Courbon et al., “Vision-based navigation of unmanned aerial vehicles,” Control Eng.
Pract. 18(7), 789–799 (2010).

29. A. Al-Kaff et al., “Survey of computer vision algorithms and applications for unmanned
aerial vehicles,” Expert Syst. Appl. 92, 447–463 (2018).

30. A. Geiger et al., “Vision meets robotics: the KITTI dataset,” Int. J. Rob. Res. 32(11),
1231–1237 (2013).

31. G. Ros et al., “The synthetic dataset: a large collection of synthetic images for semantic
segmentation of urban scenes,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit.,
pp. 3234–3243 (2016).

32. S. Borkman et al., “Unity perception: generate synthetic data for computer vision,” arXiv:
2107.04259 (2021).

33. C. Quiter and M. Ernst, “deepdrive/deepdrive: 2.0?,” March 26, 2018, https://zenodo.org/
record/1248998#.Y_kt0nbP1aQ (accessed 12 December 2021).

34. K.-T. Lai et al., “VIVID: virtual environment for visual deep learning,” in Proc. 26th ACM
Int. Conf. Multimedia, pp. 1356–1359 (2018).

35. A. Eftekhar et al., “Omnidata: a scalable pipeline for making multi-task mid-level vision
datasets from 3D scans,” in Proc. IEEE/CVF Int. Conf. Comput. Vision, pp. 10786–10796
(2021).

36. Z. Li et al., “Openrooms: an end-to-end open framework for photorealistic indoor scene
datasets,” arXiv:2007.12868 (2020).

37. M. Hodosh, P. Young, and J. Hockenmaier, “Framing image description as a ranking task:
data, models and evaluation metrics,” J. Artif. Intell. Res. 47, 853–899 (2013).

38. S. Zakharov et al., “Photo-realistic neural domain randomization,” Lect. Notes Comput. Sci.
13685, 310–327 (2022).

39. S. I. Nikolenko, “Introduction: the data problem,” in Synthetic Data for Deep Learning,
E. Loew, Ed., pp. 1–17, Springer International Publishing, Cham (2021).

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-18 Mar∕Apr 2023 • Vol. 32(2)

https://doi.org/10.1109/CVPRW.2014.131
https://dx.doi.org/10.21227/x84r-vh21
https://dx.doi.org/10.21227/x84r-vh21
https://dx.doi.org/10.21227/x84r-vh21
https://dx.doi.org/10.21227/x84r-vh21
https://doi.org/10.1109/ICCV.2017.146
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/CVPR52688.2022.00173
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/CVPRW.2018.00062
https://doi.org/10.1109/ICRA.2011.5979711
https://doi.org/10.1109/ICRA.2011.5979711
https://doi.org/10.1007/s10846-017-0483-z
https://doi.org/10.1016/j.conengprac.2010.03.004
https://doi.org/10.1016/j.conengprac.2010.03.004
https://doi.org/10.1016/j.eswa.2017.09.033
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1109/CVPR.2016.352
https://zenodo.org/record/1248998#.Y_kt0nbP1aQ
https://zenodo.org/record/1248998#.Y_kt0nbP1aQ
https://zenodo.org/record/1248998#.Y_kt0nbP1aQ
https://zenodo.org/record/1248998#.Y_kt0nbP1aQ
https://doi.org/10.1109/ICCV48922.2021.01061
https://doi.org/10.1613/jair.3994
https://doi.org/10.1007/978-3-031-19806-9_18


40. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in IEEE
Comput. Soc. Conf. Comput. Vision and Pattern Recognit. (CVPR’05), Vol. 1, pp. 886–893
(2005).

41. J. Xu et al., “Learning a part-based pedestrian detector in a virtual world,” IEEE Trans.
Intell. Transp. Syst. 15(5), 2121–2131 (2014).

42. K. M. Robinette et al., “Civilian American and European surface anthropometry resource
(CAESAR), final report. Volume 1. Summary,” Tech. Rep., Sytronics Inc., Dayton, OH
(2002).

43. G. Varol et al., “Learning from synthetic humans,” in Proc. IEEE Conf. Comput. Vision
and Pattern Recognit., pp. 109–117 (2017).

44. R. Girshick et al., “Rich feature hierarchies for accurate object detection and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 580–587
(2014).

45. K. Saenko et al., “Adapting visual category models to new domains,” Lect. Notes Comput.
Sci. 6314, 213–226 (2010).

46. K. Greff et al., “Kubric: a scalable dataset generator,” in Proc. IEEE/CVF Conf. Comput.
Vision and Pattern Recognit., pp. 3749–3761 (2022).

47. B. O. Community, Blender—A 3D Modelling and Rendering Package, Blender Foundation
(2021).

48. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games,
robotics and machine learning,” http://pybullet.org (2016).

49. R. Martin-Brualla et al., “Nerf in the wild: neural radiance fields for unconstrained photo
collections,” in Proc. IEEE/CVF Conf. Comput. Vision and Pattern Recognit., pp. 7210–
7219 (2021).

50. E. Bochinski, V. Eiselein, and T. Sikora, “Training a convolutional neural network for
multi-class object detection using solely virtual world data,” in 13th IEEE Int. Conf. Adv.
Video and Signal Based Surveill. (AVSS), IEEE, pp. 278–285 (2016).

51. P. F. Felzenszwalb et al., “Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009).

52. P. Dollár et al., “Fast feature pyramids for object detection,” IEEE Trans. Pattern Anal.
Mach. Intell. 36(8), 1532–1545 (2014).

53. J. Ferryman and A. Shahrokni, “Pets2009: dataset and challenge,” in Twelfth IEEE Int.
Workshop on Perform. Eval. Tracking and Surveill., IEEE, pp. 1–6 (2009).

54. J. McCormac et al., “Scenenet RGB-d: can 5m synthetic images beat generic imageNet pre-
training on indoor segmentation?” in Proc. IEEE Int. Conf. Comput. Vision, pp. 2678–2687
(2017).

55. J. Tremblay et al., “Deep object pose estimation for semantic robotic grasping of household
objects,” in Conf. Rob. Learn. (CoRL) (2018).

56. S. Hinterstoisser et al., “An annotation saved is an annotation earned: using fully synthetic
training for object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vision Workshops
(2019).

57. X. Zhai et al., “Lit: zero-shot transfer with locked-image text tuning,” in Proc. IEEE/CVF
Conf. Comput. Vision and Pattern Recognit., pp. 18123–18133 (2022).

58. J. Deng et al., “Imagenet: a large-scale hierarchical image database,” in IEEE Conf. Comput.
Vision and Pattern Recognit., pp. 248–255 (2009).

59. T. Xiao et al., “What should not be contrastive in contrastive learning,” in Int. Conf. Learn.
Represent. (2021).

60. X. Lin et al., “Context-gated convolution,” Lect. Notes Conmput. Sci. 12363, 701–718 (2020).
61. A. Kolesnikov et al., “Big transfer (BiT): general visual representation learning,” Lect. Notes

Comput. Sci. 12350, 491–507 (2020).
62. X. Zhai et al., “Scaling vision transformers,” in Proc. IEEE/CVF Conf. Comput. Vision and

Pattern Recognit., pp. 12104–12113 (2022).
63. A. Radford et al., “Learning transferable visual models from natural language supervision,”

in Int. Conf. Mach. Learn., PMLR, pp. 8748–8763 (2021).
64. M. Kalytis and D. Lasaite, “CGTrader,”March 3, 2011, https://www.cgtrader.com (accessed

18 May 2021).

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-19 Mar∕Apr 2023 • Vol. 32(2)

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TITS.2014.2310138
https://doi.org/10.1109/TITS.2014.2310138
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1007/978-3-642-15561-1_16
https://doi.org/10.1007/978-3-642-15561-1_16
http://pybullet.org
http://pybullet.org
https://doi.org/10.1109/AVSS.2016.7738056
https://doi.org/10.1109/AVSS.2016.7738056
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2014.2300479
https://doi.org/10.1109/TPAMI.2014.2300479
https://doi.org/10.1109/PETS-WINTER.2009.5399556
https://doi.org/10.1109/PETS-WINTER.2009.5399556
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/CVPR52688.2022.01759
https://doi.org/10.1109/CVPR52688.2022.01759
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/978-3-030-58523-5_41
https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1007/978-3-030-58558-7_29
https://www.cgtrader.com
https://www.cgtrader.com
https://www.cgtrader.com


65. M. Wisdom and A. Wisdom, “TurboSquid,” April 1, 2000, https://www.turbosquid.com/
Search/3D-Models/marketplace (accessed 18 May 2021).

66. “Free3d,” May 16, 2017, https://free3d.com/3d-models/ (accessed 18 May 2021).
67. T. Sweeney, “Unreal Engine: 4.24.3,” December 9, 2019, https://www.unrealengine.com

(accessed 1 March 2020).
68. S. Shah et al., “Airsim: high-fidelity visual and physical simulation for autonomous

vehicles,” in Field and Service Robotics, M. Hutter and R. Siegwart, Eds., pp. 621–635,
Springer (2018).

69. “Download all images,” July 28, 2021, https://chrome.google.com/webstore/detail/
download-all-images/ifipmflagepipjokmbdecpmjbibjnakm?hl=en (accessed 1 August 2021).

70. K. He et al., “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recognit., pp. 770–778 (2016).

71. L. N. Smith, “Cyclical learning rates for training neural networks,” in IEEE Winter Conf.
Appl. Comput. Vision (WACV), IEEE, pp. 464–472 (2017).

72. J. R. A. Solares et al., “Deep learning for electronic health records: a comparative review of
multiple deep neural architectures,” J. Biomed. Inf. 101, 103337 (2020).

73. G. Hacohen and D. Weinshall, “On the power of curriculum learning in training deep
networks,” in Proc. 36th Int. Conf. Mach. Learn., PMLR, Vol. 97, pp. 2535–2544 (2019).

74. R. Yedida and S. Saha, “Beginning with machine learning: a comprehensive primer,”
Eur. Phys. J. Spec. Top. 230(10), 2363–2444 (2021).

75. C. Sun et al., “Revisiting unreasonable effectiveness of data in deep learning era,” in
Proc. IEEE Int. Conf. Comput. Vision, pp. 843–852 (2017).

76. A. Prakash et al., “Structured domain randomization: bridging the reality gap by context-
aware synthetic data,” in Int. Conf. Rob. and Autom. (ICRA), IEEE, pp. 7249–7255 (2019)

Sai Abinesh Natarajan graduated his MSc degree in data analytics. He is a PhD student at the
School of Computer Science of the National University of Ireland, Galway (NUIG) under the
supervision of Prof. Michael Madden. His PhD work is in the area of procedural generation of
3D/2D hybrid synthetic image generation for data scarce computer vision tasks. He has worked
on the image analysis module for the Horizon 2020 EU project, ROCSAFE.

Michael G. Madden is an established professor of computer science at the National University
of Ireland, Galway. His research is focused on new theoretical advances in machine learning
and data mining, motivated by important practical applications, on the basis that challenging
applications foster novel algorithms, which in turn enable innovative applications. Specific
research topics include: new methods for combining domain knowledge with data mining; time
series data analysis; reasoning under uncertainty; Bayesian networks; reinforcement learning;
and applications in science, engineering, and medicine. He was the coordinator of a project
called ROCSAFE (Remotely Operated CBRN Scene Assessment and Forensic Examination)
that was funded by the EU’s Horizon 2020 program. To date, his research has led to more than
100 publications, four patents, 12 PhD graduates, and a spin-out company.

Natarajan and Madden: Hybrid synthetic data generation pipeline that outperforms real data

Journal of Electronic Imaging 023011-20 Mar∕Apr 2023 • Vol. 32(2)

https://www.turbosquid.com/Search/3D-Models/marketplace
https://www.turbosquid.com/Search/3D-Models/marketplace
https://www.turbosquid.com/Search/3D-Models/marketplace
https://www.turbosquid.com/Search/3D-Models/marketplace
https://free3d.com/3d-models/
https://free3d.com/3d-models/
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://chrome.google.com/webstore/detail/download-all-images/ifipmflagepipjokmbdecpmjbibjnakm?hl=en
https://chrome.google.com/webstore/detail/download-all-images/ifipmflagepipjokmbdecpmjbibjnakm?hl=en
https://chrome.google.com/webstore/detail/download-all-images/ifipmflagepipjokmbdecpmjbibjnakm?hl=en
https://chrome.google.com/webstore/detail/download-all-images/ifipmflagepipjokmbdecpmjbibjnakm?hl=en
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.jbi.2019.103337
https://doi.org/10.1140/epjs/s11734-021-00209-7
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/.1109/ICRA.2019.8794443

