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Abstract. Multi-beam interference (MBI) represents a method of produ-
cing one-, two-, and three-dimensional submicron periodic optical-intensity
distributions for applications including micro- and nano-electronics, photo-
nic crystals, metamaterial, biomedical structures, optical trapping, and
numerous other subwavelength structures. Accordingly, numerous optical
configurations have been developed to implement MBI. However, these
configurations typically provide limited ability to condition the key para-
meters of each interfering beam. Constraints on individual beam ampli-
tudes and polarizations are systematically considered to understand
their effects on lithographically useful MBI periodic patterning possibilities.
A method for analyzing parametric constraints is presented and used to
compare the optimized optical-intensity distributions for representative
constrained systems. Case studies are presented for both square and
hexagonal-lattices produced via three-beam interference. Results demon-
strate that constraints on individual-beam polarizations significantly impact
patterning possibilities andmust be included in the systematic design of an
MBI system. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10
.1117/1.JMM.11.4.043004]

Subject terms: multi-beam interference; interference lithography; parametric
constraints, optimization.
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1 Background
Multi-beam interference (MBI), sometimes referred to in the
literature as “holographic” or “interferometric” lithography,
provides the ability to form a wide variety of submicron per-
iodic optical-intensity distributions in one, two, and three
dimensions. Accordingly, MBI has been used in a wide vari-
ety of application areas including nano-electronics, photonic
crystals, metamaterials, subwavelength structures, optical
trapping, and biomedical structures.1–6 As a result of the
broad application of MBI, research has demonstrated numer-
ous periodic and quasiperiodic patterns with specific space-
group symmetries by careful selection of individual beam
amplitudes, polarizations, and wavevector configurations.7–12

These same parameters are also used to optimize the contrast
of the resulting interference lattice, providing lithographi-
cally useful patterning possibilities.13–15

Numerous optical configurations and lithographic techni-
ques have been developed to incorporate MBI, providing
the potential for simple, rapid, wafer-scale, and low-cost
fabrication.5,16–21 These configurations may be broadly cate-
gorized as wavefront-dividing or amplitude-splitting meth-
odologies.22 Perhaps the most common MBI configuration
employs a Lloyd’s mirror in a wavefront-dividing scheme
to reflect a portion of an expanded source beam to intersect
with the transmitted portion forming an interference pattern
of one-dimensional (1-D) fringes.23 With multiple exposures,
the Lloyd’s mirror configuration can produce two-dimen-
sional (2-D) and three-dimensional (3-D) patterns.24

To fabricate 2-D periodic patterns in a single exposure,
multiple beams must be simultaneously generated. Two
common three-beam wavevector configurations, as depicted

in Fig. 1(a) and 1(c), are used to form square and hexagonal
periodic lattices, respectively. For a lattice with square trans-
lation symmetry as depicted in Fig. 1(a) and 1(b), the three
beams, represented by wavevectors k1, k2, and k3, intersect
at the x-y plane at a common incidence angle, θ, with respect
to the z axis, where k3 is contained in the y-z plane while k1
and k2 are contained in the x-z plane. The periodicity or lat-
tice constant, asq, of the resulting interference pattern is
given by

asq ¼ λ∕ð
ffiffiffi
2

p
sin θÞ; (1)

where λ is the freespace wavelength of the source. For a lat-
tice with square translation symmetry as depicted in Fig. 1(c)
and 1(d), the wavevectors are again arranged at a common
incidence angle with k1 contained in the y-z plan, and now
k2 and k3 are arranged such that the projections of all three
vectors are separated by exactly 120 degrees in the x-y plane.
The periodicity or lattice constant ahex of the resulting inter-
ference pattern is given by

ahex ¼ 2λ∕ð3 sin θÞ: (2)

Several optical configurations are available to create the
wavevector schemes in Fig. 1. For example, to generate a
lattice with hexagonal translational symmetry as depicted in
Fig. 1(c) and 1(d), one wavefront-dividing method employs
three gratings in a single photo-mask to diffract an incident
expanded beam, such that the first order diffracted beams
intersect and interfere at the sample plane as depicted in
Fig. 2(a).25–27 Similarly, a single compound diffractive opti-
cal element or phase mask may be placed in close proximity
to the sample plane to produce a near-field self-interference
pattern of the zero-, positive-, and negative-diffracted0091-3286/2012/$25.00 © 2012 SPIE
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orders.28,29 Another wavefront-dividing configuration incor-
porates a prism designed to divide and refract the single
expanded beam into multiple beams as depicted in
Fig. 2(b).30,31

Amplitude-splitting configurations may also be used to
generate the three interfering beams required for a hexagonal
lattice, typically splitting a single common source beam into

multiple beams through the use of beam splitters or diffrac-
tive elements.16,19,20 The beams are then directed to intersect
at the plane of interference through the use of mirrors, lens,
and/or prisms, such as the pattern-integrated interference
exposure system (PIIES) depicted in Fig. 2(c).32,33 In this
system, the three beams are generated and conditioned
for specific amplitudes and linear polarizations via a

Fig. 2 Three-beam interference configurations. (a) A diffractive-grating mask diffracts portions of the incident-expanded beam such that the first-
order diffracted beams intersect and interfere at the sample plane.26 (b) A prism is used to divide and refract different portions of an incident
collimated beam.21 (c) A three-beam pattern-integrated interference exposure system provides individual control of beam amplitude and polariza-
tion allowing for a single-step formation of a two-dimensional periodic lattice with nonperiodic functional elements integrated into the periodic
pattern.20

Fig. 1 Example of three-beam interference wavevector configurations. A square-lattice interference pattern with (a) p4m or (b) cmm plane-group
symmetry is produced by three beams, where k3 is contained in the y -z plane while k1 and k2 are contained in the x -z plane, each at a common
incidence angle, θ. A hexagonal-lattice interference pattern with (c) p6m or (d) cmm plane-group symmetry is produced by three beams, where k1 is
contained in the y -z plan and k2 and k3 are arranged such that the projections of all three vectors are separated by exactly 120 deg in the x -y plane.
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combination of half-wave plates and beam-splitter
cubes. In general, beam-splitting configurations typically
offer increased opportunity to condition individual-beam
parameters.

Each of the configurations used for MBI offer varying
levels of interferometric stability, reconfigurability, and con-
trol over individual-beam amplitudes and polarizations. The
important characteristics of the two main MBI configuration
categories are listed in Table 1. As a result of the relatively
short optical path lengths in wavefront-dividing configura-
tions, these methods are essentially phase-locked, represent-
ing the most interferometrically stable option for MBIL.
However, in most wavefront-dividing schemes, control
over individual beam amplitudes and polarizations is typi-
cally limited and wavevector configurations are gener-
ally fixed.

A multiple-beam-splitting configuration, such as the
PIIES configuration depicted in Fig. 1(d), provides the abil-
ity to easily reconfigure the wavevector configuration for a
wide range of lattice constants and translational symmetries,
while allowing for individual control over beam parameters.
However, a common drawback of beam-splitting-based con-
figurations is the potential for interferometric instability.
Any perturbations to the optical components, optical path
lengths, or relative phases of the interfering beams may result
in a translation of the pattern or change in the symmetry of
the unit cell. Thus, pattern stability is generally low for
amplitude-splitting schemes.

From Table 1, it is clear that the two MBI configuration
categories have advantages and disadvantages that must be
considered. Even though most MBI configurations are not
easily reconfigured, they may all be designed to provide one
of a wide range of periodicities and translational symmetries
based on a fixed wavevector configuration. However, these
same systems are characteristically limited in ability to con-
dition the individual beams. In this case, it is not clear that
full patterning capability remains as constraints are placed on
beam amplitudes and polarizations. In some cases, the spe-
cific plane-group symmetries play a significant role in the
performance characteristics of a device fabricated using
MBI. For example, the plane-group symmetry and lattice
point geometry have been shown to affect the photonic-band-
gap characteristics in photonic crystals,7,8,10–12,34 selective
plasmonic excitation in plasmonic crystals,35 photonic crys-
tal laser beam pattern36 and polarization-mode control,37

birefringence of photonic crystal fibers,38 cell behavior in tis-
sue engineering,39 tuning of surface textures,40 magnetiza-
tion switching in periodic magnetic arrays,41 and negative
refraction and superlensing in metamaterials.42,43

Even if a particular plane-group symmetry is possible, it is
not clear that sufficient contrast is attainable for optical litho-
graphy purposes. In the optimized design of the specific

space-group symmetries and motif geometries, most
research assumes individual control over beam amplitudes
and polarizations. Some research suggests that sufficient
contrast may be possible when beam parameters are per-
turbed.44 In one study, the effects of a single linear polariza-
tion was analyzed for a system of cube beamsplitters and
right-angle prisms used to generate three interfering
beams from a common linearly polarized source.45 However,
this study was limited to a 2-D hexagonal lattice for a spe-
cific configuration. In another study, parametric constraints
were considered for square-lattice optimized motif geome-
tries.46 The present work expands on these efforts, providing
a general methodology and systematic study of the effects of
amplitude and polarization constraints on the full range of
MBI patterning possibilities in linearly polarized three-
beam interference for both square- and hexagonal-lattice
symmetries, under the conditions for primitive-lattice-vec-
tor-direction equal contrast.15

2 Parametric Constraints
For three interfering beams, the general form of the total
time-independent intensity distribution, ITðrÞ, may be
given as

ITðrÞ ¼ Iof1þ V12 cos½ðk2 − k1Þ · r� þ V13 cos½ðk3 − k1Þ
· r� þ V23 cos½ðk3 − k2Þ · r�g; (3)

where Io is a DC intensity term, ki is the wavevector repre-
senting the i’th beam, i ¼ 1, 2, 3, and an interference coeffi-
cient, Vij, is defined as

Vij ¼ EiEjeij∕Io; (4)

where Ei is the amplitude and eij is the polarization effi-
ciency factor defined as

eij ¼ ðêi · êjÞ; (5)

where êi represents the linear polarization vector of the i’th
beam.14 The absolute contrast, often called “fringe visibility”
or “fringe contrast,” is then defined as

Vabs ¼ ðImax − IminÞ∕ðImax þ IminÞ; (6)

where Imax and Imin are the maximum and minimum values
of the intensity distribution given by Eq. (3). To optimize this
contrast, the conditions for primitive-lattice-vector-direction
equal contrasts result in a constrained optimization problem
to determine the polarization vector values for each recording
wavevector.14 Once the optimized polarization vector orien-
tations are determined, the required amplitudes may be deter-
mined. These constrained optimization requirements for

Table 1 Comparison of MBIL configuration categories.

Configuration characteristics

Configuration category Interferometric stability? Reconfigurable? Individual beam conditioning? Full patterning capabilities?

Wavefront-dividing High No Limited ?

Beam-splitting Low Yes Yes Yes
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beam amplitudes and polarizations are summarized in Table 2
for the p4m, cmm, and p6m plane-group symmetries possi-
ble with square- and hexagonal-lattice translational symme-
tries. It is noted that cmm plane-group symmetry is possible
for both square and hexagonal lattices. For this reason the
two are differentiated here by cmm(sq) and cmm(hex),
respectively. Of course, lower-order symmetries are also
satisfied under the conditions listed in Table 2. For example,
pmm symmetry is satisfied with the p4m plane-group, while
p2 symmetry is satisfied for all cases. For the purposes of the
current work, only the higher order symmetries are analyzed.

Under the conditions for primitive-lattice-vector-direction
equal contrasts, the individual linear polarization vectors, êi
are defined according to the polarization vector basis
depicted in Fig. 3. Using this basis, each polarization vector
is given by Ref. 47

êi ¼ Rzð−φiÞRyð−θiÞRzð−ψ iÞRyðθiÞRzðφiÞðẑ × kiÞ; (7)

where θi and φi are the spherical coordinates of the wave-
vector ki, ψ i is the counterclockwise angular rotation of the
polarization vector (looking antiparallel to the wavevector),

and RzðβÞ and RyðβÞ are rotation matrices about the z and y
axis, respectively.

To find the optimal set of polarization vectors for a given
plane-group symmetry, objective functions were developed
for each of the optimization constraints listed in Table 2
to solve for the conditional maximum. In this method,
Lagrangian multipliers, Ω, are used to implement constraints
to the objective function13 (λ is normally used as the symbol
for a Lagrangian multiplier; however, Ω is used here to dif-
ferentiate the multiplier from the freespace wavelength, λ).
The resulting objective functions for maximum absolute
contrast under the conditions for primitive-lattice-vector-
direction equal contrasts are given in Table 3.

2.1 Amplitude Constraints

In the case of the three-beam interference configuration in
Fig. 1(c), a half-wave plate rotates the plane of the input
linearly polarized light, thereby allowing control over the
amplitude Ei of output beam from each polarizing cube
beamsplitter.20 In other configurations, individual-beam
amplitudes may be controlled using attenuating-transmission
materials in the path of each interfering beams.

In many configurations it is difficult to set specific ampli-
tudes for each individual beam. For example, most wave-
front-splitting schemes result in multiple beams with
common or a fixed ratio of amplitude values. Accordingly,
the first constraint considered here is the case of equal indi-
vidual beam amplitudes E1 ¼ E2 ¼ E3. Based on the ampli-
tude constraints given by Table 2, an additional constraint of
e13 ¼ e23 results for the p4m and cmm(hex) plane group
symmetries. For p6m and cmm(sq) plane group symmetries,
the additional constraint is e12 ¼ e13 ¼ e23. The resulting
simplified objective functions for the case of equal individual
beam amplitudes are given in Table 4.

Table 2 Constraints for optimal absolute contrast under the conditions for primitive-lattice-vector-direction equal contrasts.

Translational symmetry Plane-group symmetry Optimization constraints

Square p4m maximize 2e13e23ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
13þe2

23

p , e12 ¼ 0,

E1 ¼ e23
e13

E2 (V 13 ¼ V 23, V 12 ¼ 0)Hexagonal cmm(hex)

Square cmm(sq) maximize 2e12e13e23

e2
12þe2

13þe2
23
,

E1 ¼ e23
e12

E3, E2 ¼ e13
e12

E3

(V 13 ¼ V 23 ¼ V 12)

Hexagonal p6m

Fig. 3 Orientation of basis vectors to define linear polarizations. θi
and φi are the spherical coordinates of the wavevector ki . The polar-
ization vector êi is contained in the plane Ni orthogonal to the wave-
vector, and defined by the counterclockwise angular rotation, ψ i of the
polarization vector (looking antiparallel to the wavevector).

Table 3 Optimization functions for optimal absolute contrast and pri-
mitive-lattice-vector-direction equal contrasts assuming individual
control over beam amplitudes and polarizations.

Plane-group
symmetry Objective function

p4m, cmm(hex) f ðψ1; : : : ;ψ3;Ω1Þ ¼ 2e13e23∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
13 þ e2

23

q
þΩ1e12

p6m, cmm(sq) f ðψ1; : : : ;ψ3Þ ¼ 2e12e13e23∕ðe2
12 þ e2

13 þ e2
23Þ
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2.2 Polarization Constraints

In addition to the ability to set the individual beam ampli-
tudes, the configuration of Fig. 1(c) allows for control
over individual-beam linear polarizations as required for
maximum absolute contrast and primitive-lattice-vector-
direction equal contrasts. This is accomplished with the
final half-wave plate in the path of each beam. However, in
most MBI configurations it is usually difficult to set the
polarization for each beam individually. Typically, a single
linearly polarized beam is divided into the multiple beams
as depicted in Fig. 2(a) and 2(b), with each beam retaining
the original linear polarization angle of the source beam ψB
The individual-beam polarization is then defined by Eq. (7)
where ψ1 ¼ ψ2 ¼ ψ3 ¼ ψB representing the first polariza-
tion constraint considered here for equal individual beam-
set polarizations.

Alternatively, it may be possible to improve patterning
possibilities or absolute contrast through the use of a single
polarizer just prior to the sample plane to set a common
polarization for each beam as depicted in Fig. 4(a). For
this case, the individual beam-polarization vectors are deter-
mined by finding the vector ei perpendicular to the wavevec-
tor ki that is contained in the polarization plane R defined by
the origin ð0; 0; 0Þ, the vector defining the pass axis of the
polarizer P and the wavevector ki, as depicted in Fig. 4(b).
Here, the polarization pass axis vector is defined as

P ¼ sinð−αPÞx̂þ cosð−αPÞŷ; (8)

where −αP is the angle of the pass axis of the polarizer with
respect to the y axis. The polarization vector ei is then the
intersection of the polarization plane Ri and the plane

orthogonal to the wavevector Ni. This intersection is
found by taking the cross product of the normals nR and
nN for each of the planes. With this polarization vector
basis, the individual-beam polarization vectors for each
wavevector are given by

ei ¼ ki × ð½sinð−αiÞx̂þ cosð−αiÞŷ� × kiÞ; (9)

where α1 ¼ α2 ¼ α3 ¼ αP for the second polarization con-
straint considered in this study, equal sample-plane-set polar-
ization. For the two polarization constraints, the new
polarization vector definitions and required constraints are
presented in Table 5.

3 Constrained Optimization Results
The constrained optimization functions in Table 3 and 4 were
solved using the polarization definitions and constraints
given in Table 5 for both square- and hexagonal-lattice
space-group symmetries across the full range of common
incidence angles. The optimized constrained parameter
values were then used to evaluate the resulting optical-inten-
sity distribution and maximum absolute contrast given by
Eqs. (3) and (6) as a function of the common sample-
plane incidence angle. For the unconstrained case of optimal
individual beam amplitudes and optimal individual beam-set
polarization, unity absolute contrast Vabs ¼ 1 is achieved
across the full range of possible lattice constants for all
plane-group symmetries as predicted by the conditions for
primitive-lattice-vector-direction equal contrast.14 For the
cmm(sq) and p6m symmetries, unity contrast is possible
when the intensity profile is inverted, that is, when the points
of intensity maxima become intensity minima. This result is
obtained when the product of the three interference coeffi-
cients given by Eq. (4) are allowed to be negative in
value. If the cmm(sq) and p6m symmetries are optimized
for intensity maxima at the lattice points, the optimal abso-
lute contrast varies from 0.6 to unity. Typically, optical litho-
graphy requires an absolute contrast 0.4 to 0.8 or higher to
resolve the required features based on the photoresist proper-
ties, feature sizes, and coherence of the source.48

3.1 Amplitude Constraints

When the equal individual beam amplitudes constraint is
considered, all plane-group symmetries are again possible
across the full range of common incidence angles. However,
the maximum absolute contrast is now limited to Vabs ¼ 0.94
for p4m and cmm(hex) symmetries, while the cmm(sq) is
limited to a value ranging from 0.88 to unity. The p6m abso-
lute contrast remains unchanged. This stems from the fact
that the unconstrained p6m optimization requires amplitude
values14 of �E1 ¼ E2 ¼ E3.

Table 4 Optimization functions for optimal absolute contrast and primitive-lattice-vector-direction equal contrasts with equal individual beam ampli-
tudes.

Plane-group symmetry Objective function

p4m, cmm(hex) f ðψ1; : : : ;ψ3;Ω1;Ω2Þ ¼ 2
3 e13 þΩ1ðe13 − e23Þ þΩ2e12 (e13 ¼ e23, e12 ¼ 0, E1 ¼ E2 ¼ E3)

p6m, cmm(sq) f ðψ1; : : : ;ψ3;Ω1;Ω2Þ ¼ 2
3 e13 þΩ1ðe12 − e13Þ þΩ2ðe13 − e23Þ (e13 ¼ e23 ¼ e12, E1 ¼ E2 ¼ E3)

Fig. 4 Orientation of basis vectors for sample-plane-set polarization.
(a) A single linear polarizer, with a pass axis angle −αP , may be
placed just prior to the sample plane to improve contrast. (b) The
plane R contains the wavevector k and the polarization pass axis vec-
tor P. The polarization vector ê is then the intersection of the polar-
ization plane R and the plane orthogonal to the wavevector N.
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3.2 Polarization Constraints

A significant reduction in patterning possibilities and abso-
lute contrasts occurs when polarization constraints are con-
sidered. These limitations are made worse when combined
with the amplitude constraint. To demonstrate the effect
of polarization constraints, Fig. 5(a) to 5(f) plot the maxi-
mum absolute contrast, Vabs, for the unconstrained case
against the various constrained case combinations for p4m,
cmm(hex), p6m, and cmm(sq) plane-group symmetries,
respectively. In each graph, the absolute contrast is plotted
as a function of the common wavevector incidence angle
at the sample plane. The unconstrained and the amplitude-
constrained case (labeled “Equal Amplitudes” for equal

individual beam amplitudes) are plotted as a baseline for
comparison.

Beginning with the p4m plane-group in Fig. 5(a), both
polarization constraints (labeled “Equal Polarizations” for
equal individual beam-set polarizations and “Sample-Plane-
Set Polarizations” for the equal sample-plane-set polariza-
tions) limit the range of incidence angles to 45 deg and
higher in order to produce this symmetry. Furthermore,
the absolute contrasts drop off sharply from a unity value
at 45 deg. In the case of equal individual beam-set polariza-
tions, the contrast drops to zero at a common incidence angle
near θ ≈ 66 deg. If a conservative absolute contrast of
Vabs ¼ 0.4 is used as a minimum threshold for optical

Fig. 5 Optimized absolute contrasts for square and hexagonal lattices. The unconstrained maximum absolute contrast is compared to the those for
the amplitude and polarization constraints as a function of the common wavevector incidence angle at the sample plane for (a) p4m, (b) cmm(hex),
(c) p6m, (d) p6m (negative pattern), (e) cmm(sq), and (f) cmm(sq) (negative pattern) plane-group symmetries.

Table 5 Polarization vector definitions and constraints for optimal absolute contrast and primitive-lattice-vector-direction equal contrasts for uncon-
strained, equal individual beam-set polarization, and equal sample-plane-set polarization.

Polarization case Polarization vector definition Constraints

Optimal individual beam-set polarization

êi ¼ Rzð−φi ÞRy ð−θi ÞRzð−ψ i ÞRy ðθi ÞRzðφi Þðẑ × ki Þ
None

Equal individual beam-set polarizations ψ1 ¼ ψ2 ¼ ψ3 ¼ ψB

Equalsample-plane-setpolarizations êi ¼ ki × ð½sinð−αi Þx̂ þ cosð−αi Þŷ � × ki Þ α1 ¼ α2 ¼ α3 ¼ αP
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lithography purposes, the range of angles for p4m symmetry
is reduced to 45 ≤ θ < 57 deg or 76 < θ < 90 deg, and 45 ≤
θ < 68 deg for the two polarization constraints, respectively.
If a common ultraviolet (UV) i-line source is used at
λ ¼ 363.8 nm, the resulting range of periodicities, using
Eq. (1), is then 363.8 ≥ asq > 306.7 nm or 265.1 > asq >
257.2 nm, and 363.8 ≥ asq > 277.4 nm. Finally, if the
equal individual beam amplitudes are combined with either
of the polarization constraints, the ability to achieve p4m
symmetry is limited to a single incidence angle of
θ ¼ 45 deg (asq ¼ λ). Similar results are obtained for the
cmm(hex) symmetry as depicted in Fig. 5(b). However,
when the equal individual beam amplitudes is combined with
either of the polarization constraints, the cmm(hex) symme-
try (with V13 ¼ V23 and V12 ¼ 0) is not possible.

For the p6m plot in Fig. 5(c) the maximum absolute
contrast begins near unity at a 0 deg incidence angle for
both the equal individual beam-set polarizations and equal
sample-plane-set polarizations cases and gradually reduces
to lower contrast values, falling below Vabs ¼ 0.4 near θ ≈
48 deg and 54 deg for the two cases, respectively. When
negative (or inverted) intensity distributions (labeled “nega-
tive pattern”) are considered, higher absolute contrasts may
be achieved for the larger incidence angles as depicted in
Fig. 5(d). When combined with equal individual beam
amplitudes, the p6m symmetry is no longer possible (with
V13 ¼ V23 ¼ V12). Similar results are obtained for the
cmm(sq) symmetry as depicted in Fig. 5(e) and 5(f). How-
ever, when the equal individual beam amplitudes are com-
bined with equal individual beam-set polarizations, the
cmm(sq) symmetry remains possible at a single incidence
angle of 60 deg with unity absolute contrast.

4 Summary and Discussion
A systematic and comprehensive analysis of the effects of
constraints on individual-beam amplitudes and polarizations
has been presented for the unique 2-D plane-group symme-
tries possible using three linearly polarized beams config-
ured to produce an interference pattern with square- or
hexagonal-lattice translational symmetry. These patterns
were optimized for maximum uniform contrast while satis-
fying the conditions for primitive-lattice-vector-direction
equal contrasts.

When only amplitude constraints are considered, the
results demonstrate that all plane-group symmetries remain
possible over the full range of lattice constants. While the
absolute contrast is reduced to a minimum value of
Vabs ¼ 0.88, this value is still sufficient for optical lithogra-
phy purposes.

When polarization constraints are introduced, significant
reductions were noted for all plane-group symmetries. Based
on the specific application requirements, it may be necessary
to use an MBIL configuration, such as the multiple-beam-
splitting configuration in Fig. 2(c), that allows individual
conditioning or beam polarizations to ensure a robust pat-
terning capability.

Although numerous additional parametric constraint
combinations are possible and may merit consideration,
the cases presented here provide useful insight into the gen-
eral design requirements for an MBI system. However, the
optimization methodology presented here may be modified
as necessary to model and predict the patterning possibilities

of other constrained configurations to ensure that a given
MBI configuration meets the requirements for a specific pat-
terning application.

As efforts to incorporate MBI into commercial fabrication
processes continue, a complete understanding of the pattern-
ing possibilities is required in the systematic design of future
MBI configurations. While the PIIES configuration in
Fig. 2(c) allows for the widest range of high-contrast periodic
pattern symmetries, future research will focus on increasing
interferometric stability, to provide the potential for relatively
simple, subwavelength, and cost-effective periodic pattern-
ing with integrated nonperiodic functional elements.
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