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Abstract

Background: Systematic/stochastic pattern defects affect the production yield of integrated
circuits (IC) containing trillions of 10-nm level features.

Aim: We detect pattern anomalies/defects from images obtained from scanning electron micro-
scopes (SEM) for random/arbitrary IC patterns without using design data.

Approach: We decompose SEM images into small sub-images and apply an identical auto-
encoder to each of them to detect anomalies. The astronomical varieties in random IC patterns
are reduced into limited varieties in elementary patterns, which are coded onto limited dimension
latent vectors in autoencoder. The discrepancy between autoencoder input and output represents
a deviation of local pattern shapes from ideal or allowed ones and is used as an index of anomaly.

Results: A wide variety of anomalies/defects are detected in regular and random IC patterns
fabricated by extreme ultra-violet lithography without prior knowledge about anomalies at a
high signal-to-noise ratio within a time shorter than the typical image acquisition time of SEMs.
They include missing/necking in holes/trenches, collapsing/breaking in lines, various local pat-
tern distortion/deformation, and tiny particles. Frequency and spatial distributions of the discrep-
ancy index are sensitive to process changes and can be used for visualizing the sign or causes
of anomalies.

Conclusions: The method is effective for inspecting memory and random logic ICs with high-
speed SEMs.
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1 Introduction

The densities of integrated circuits (IC) are increasing with continuously shrinking circuit pat-
terns, which is achieved by the introduction of EUV lithography and/or multiple patterning tech-
nologies. As a result, more than a trillion features as small as 10 nm are formed on a 300-mm
wafer or even on an exposure field, and this imposes another challenge to guarantee defect-free
for these circuit patterns. In particular, the following two types of defects are becoming major
concerns; systematic defects are generated at particular spots in design patterns where the process
windows are narrow (aka hot-spots or weak-spots).1 Stochastic defects are generated randomly in
EUV resist patterns due to photon shot noise and discrete/probabilistic natures of materials, and
their probability exponentially increases with decreasing feature size.2 The sizes of both types
of defects are typically smaller than minimum circuit feature size and they are highly sensitive to
process conditions, thus are generated by unexpected variations in process conditions.

Conventionally, the inspection of these defects has been carried out by optical inspection
tools.3 Since it is not clear if the optical tools can keep enough sensitivity for ever-shrinking
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defects size, high-speed SEM inspection including multi-electron-beam systems are also
expected.4 From inspected images, the pattern anomalies/defects are usually detected based
on comparison with some reference data, as in die-to-die comparison in optical tools. A high-
resolution capability of SEMs enables direct comparison of circuit patterns between inspected
images and design layout data, but this generally requires access to a huge amount of design
layout data particularly in random logic IC.5

In the area of anomaly detection, machine learning (ML) has widely been adopted.6 In gen-
eral, there are two approaches in applying ML to anomaly detection; in one approach, machines
are trained with abnormal data in advance, then they find abnormal parts of the data to inspect. In
the other approach, the machines are trained with normal data in advance, and then, they find the
parts that do not match the learned normal data from the data to inspect.7

In applying the former approach to detecting IC pattern anomaly/defects from SEM inspected
images,8 it is difficult to obtain sufficient numbers of training data, because anomaly data
required for training are extremely rare in general. Additionally, tiny defects/anomalies need
to be filtered from the normal pattern background, which has extremely wide varieties. In con-
trast with the latter approach, we can easily obtain a number of normal pattern data as training
data, although the problem with the huge pattern variations remains. Several attempts have been
made to apply ML to evaluating IC patterns/masks using normal data.9,10 This study discusses
the potential of the second approach for direct inspection and analysis of images taken by SEM
inspection tools.

In what follows, we introduce our approach based on autoencoders in Sec. 2. Its character-
istics and application results are discussed in Secs. 3 and 4. All the samples and SEM images
used in this study were prepared and obtained in IMEC.

2 Method

2.1 Basic Concept

An autoencoder is a neural network that has widely been used in various applications including
anomaly detections.6,7 It consists of an encoder and decoder. The encoder compresses the input
data into the middle layer called a latent vector, and the decoder decompresses the data from the
latent vector to generate a representation as close to the original input as possible. The latent
vector has a smaller dimension than the input data and represents a data-specific and lossy
version of the trained data. The network is learned to minimize the reconstruction loss, a distance
function, or the amount of information loss between the compressed and the decompressed rep-
resentations. After training, the autoencoder reconstructs input data only when input data is sim-
ilar to those used for training data. Thus, by training the autoencoder with normal data, it outputs
normal data only when the input is normal, and this characteristic of autoencoders can be used
for detecting anomalies. Here, we investigate the application of autoencoders to inspecting IC
patterns. In this section, we introduce our basic approach.

Practically, several problems arise when applying the autoencoder to detecting defects/
anomalies in IC patterns from images obtained by SEM. First, the amount of data to inspect
is huge (1-mm square area contains 1012 of 1-nm square pixels). Second, the variation in circuit
patterns contained in these areas is astronomical in particular for random logic IC. Third, defect
signals [and signal-to-noise ratio (SNR)] are low due to their tiny sizes (<10 nm) compared with
circuit patterns (composed of 10- to 20-nm width lines in a 0.5- to 2-μm square field of view
(FOV) of SEM, for example).

Our approach to these problems is as follows (Fig. 1): We decompose IC pattern images into
a number of small sub-images using a clipping window and apply an identical autoencoder to
each of those sub-images to detect anomalies. The astronomical number of varieties in complex
random patterns are reduced into a limited variation in elementary patterns within clipped areas,
which can be coded onto limited dimension latent vectors and reconstructed in autoencoder. The
discrepancy between input and output of autoencoder represents any deviation of local pattern
shape from ideal, expected, or allowed ones and is used as an index of anomaly. By decomposing
original images into small sub-images, we limit the size of the autoencoder and decrease the
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pattern variation in sub-images within practical (trainable) range while enhancing defect SNR.
This approach can be applied to arbitrary complex pattern features as in random logic IC.

For a simple example, suppose that we clip F square sub-area (F: minimum line width) from
random circuit patterns designed under the so-called Manhattan layout rule Fig. (2, left). The
possible pattern variations within the clipped area are limited to patterns as illustrated in the right
of Fig. 2. Reversely, an arbitrarily designed layout can be expressed by properly combining sub-
patterns in this reduced elementary pattern set. Thus, by training the autoencoder to reconstruct
patterns contained in the elementary patterns set in Fig. 2 only, in principle, we can detect
anomalies in arbitrary patterns designed as a combination of them.

For real pattern features fabricated by projecting (exposing) properly designed mask, the
distances between neighboring two edges and radius of curvature of edges do not exceed certain
values. Any inter-edge distance or radius of edge curvature that is smaller than this criterion is
detected as an anomaly. Thus, we train an autoencoder/network with sub-images for as wide
variations as possible, which can appear on normally exposed wafers. It is worth noting that
by including tolerable pattern variations in size and shape within training data, we expect our
autoencoder to judge these variations as tolerable.

Practically, the sub-image size and network are properly chosen so that the selectivity
between normal and abnormal patterns is obtained with a sufficient SNR. In the following dis-
cussion, we use the clipping size around 2F rather than F, though this makes the range of possible
pattern variations more complex than in the above simple example in Fig. 2.

2.2 Procedure of Image Decomposition and Autoencoding

Here, we show the practical procedure of our method using a simple example. In the first step,
we generate an autoencoder. SEM images (2048-nm FOV with 2-nm pixel size) are obtained
for defect-free 32-nm pitch one-dimensional (1D) random logic patterns fabricated using EUV

Fig. 1 Pattern anomaly detection concept based on autoencoding of decomposed IC pattern
images.
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lithography (13.5-nm, NA ¼ 0.33). By shifting a 36-nm square clipping window at 10-nm pitch
cycle both in the x- and in the y-direction, 677,448 sub-images are extracted from the 18 SEM
images, and 75% and 25% of them are used as training and validation data for training an auto-
encoder shown in Fig. 3. We simply flatten each two-dimensional (2D) sub-image into a 1D
vector and apply a simple (seven-layer) multi-perceptron-based autoencoder, which is trained
to minimize the loss function defined by the mean square error between input and output images.
Details in training conditions are shown in the figure. After training, the autoencoder success-
fully reconstructs the input sub-images in the output images as shown in Fig. 3. We define a
discrepancy index Dðx; yÞ for a particular sub-image at ðx; yÞ by mean square input-output
deviation (square sum of deviations between the normalized input image intensity IinðiÞ for i’th
pixel in a sub-image and corresponding output intensity IoutðiÞ divided by the total pixel number
npxl in a sub-image as shown in Fig. 1). A histogram of the indices for sub-images in training and
validation data is plotted by blue in Fig. 4.

Fig. 3 Autoencoder function for normal patterns. (a) input sub-images, (b) multi-perceptron net-
work configuration, and (c) output of autoencoder after training. The size of sub-images is 36-nm
square and the clipping pitch is set equal to the sub-image size for visibility.

Fig. 2 Example of arbitrary patterns reduced to and reconstructed from elementary pattern set.
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Next, we apply the trained autoencoder to inspect another SEM image taken for the patterns
fabricated with the same mask and process as used for the training data, but this time, they
contain some defects as shown by a white square in Fig. 5(a) as an example. We inspect
35 image pictures containing various type defects as shown in the left column of Fig. 6.

Fig. 4 Histogram of the discrepancy index between input sub-image and autoencoder output
for defect-free images (blue) and images including defects (red).

Fig. 5 Autoencoder function for defect patterns. (a) SEM view of typical defect sample. (b) Spatial
distribution of the discrepancy index for the sample of (a). (c) and (d) Autoencoder input and output
for sub-images around defect. The size of sub-image is 36-nm square and the clipping pitch
is 20 nm.
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Fig. 6 Autoencoder responses to various type defects. (a) defect examples, (b), (c), and
(d) autoencoder input sub-images, outputs, and discrepancy index maps around defects. The size
of sub-image is 36-nm square and the clipping pitch is 20 nm.
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From these images, the same size sub-images as the training data are clipped in a 20-nm pitch
cycle and each sub-image is input to the trained autoencoder. The discrepancy indices Dðx; yÞ
are calculated for each sub-image at ðx; yÞ in the inspected images, and its histogram is shown in
red in Fig. 4. Although the major parts of the frequency distribution are similar between the
defect-free training data (blue) and the inspected data (red), frequency counts appear in a high
index range for the tail of the inspected data. In Fig. 5(b), the spatial distribution of the dis-
crepancy index is shown with respect to the sub-image clipping position for the SEM images in
Fig. 5(a). We find a high index point at the defect point indicated in Fig. 5(a), and this cor-
responds to some of high index counts in the histogram. Sub-image inputs and outputs of the
trained autoencoder around the above defect are compared in Figs. 5(c) and 5(d). Defects in
input sub-images are not reconstructed in the output sub-images while other parts of patterns are
reconstructed. We examined the discrepancy between input and output of the autoencoder for
sub-images around various type defects shown in the left column of Fig. 6. Although the value
of the discrepancy index depends on the relation between the clipping window position and
defect patterns, we observe index peaks for every defect as shown in the right column of
Fig. 6, and all the defects in the figure are detected by setting the discrepancy index threshold
at around 0.003, for example.

Abnormal sub-images are distinguished from normal ones by setting a threshold in the dis-
crepancy index between its distribution ranges for normal and for abnormal sub-images in the
histogram. The separation between the above two ranges represents a selectivity of anomaly. We
will discuss several factors/parameters for maximizing this separation in the next section.

Time required for autoencoding a full SEM image (1024 × 1024 pixels) ranges from 0.1 to
0.2 s using a standard laptop PC (i-core 5 with 8 GB memory). This is comparable to or shorter
than image acquisition time in most single-beam SEM tools, and thus, it does not limit the
throughput of whole inspection processes. Typical training time is 5 to 30 min and both train-
ing and autoencoding time are expected to be further shortened by introducing some accel-
eration devices such as GPUs. The time required for autoencoding a full SEM image is
obtained by multiplying the time required for autoencoding a single sub-image and the total
number of sub-images for covering the inspection area. The computation time does not depend
so much on sub-image size because, with increasing sub-image size, the sub-image autoen-
coding time increases while the sub-image number for covering the inspection area decreases.
It is worth noting that we obtained reasonable results by simply applying multi-perceptron
autoencoders to 1D vectors obtained by flattening 2D sub-images within reasonable compu-
tation time. In image analysis using deep learning, a convolutional neural network (CNN) is a
standard approach today because it achieves record-high performances while keeping the
number of network parameters compact. We applied convolutional autoencoders to the same
problem as discussed above and obtained results comparable to those with multi-perceptron
autoencoders. It took a long time to train the network and to reconstruct sub-images, however,
and we find little advantage in using convolutional autoencoders for our purpose here at
present.

3 Analysis and Optimization of Autoencoder

3.1 Defect Selectivity and Inspection Pattern Extendibility

A certain sub-image area is necessary for capturing the characteristics of normal patterns to
distinguish normal and abnormal patterns, and a certain latent dimension is necessary for encod-
ing normal pattern variations within the sub-image area. The minimum necessary latent dimen-
sions depend on the sub-image size since the number of circuit pattern variations increases with
the sub-image size. The optimal sub-image size and latent dimensions depend also on the com-
plexity of patterns to inspect. Here we focus on these two parameters and examine their
influences on the autoencoder selectivity to anomalies/defects. We start from simple features
toward more complex patterns and compare discrepancy index histograms for normal and abnor-
mal images for several conditions. Conditions other than the above two parameters are fixed for
highlighting their influences.
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3.1.1 Lines and spaces pattern

First, for simple lines and spaces (L/S), the autoencoder was trained with 10 images each of
which contains a defect shown in Fig 7(a) because a sufficient number of defect-free images
were not available. The histograms of the discrepancy index, a square sum of the discrepancy
between input and output of autoencoder for all pixels in a sub-image, are shown in Fig. 7(b) for
autoencoder trained under each different latent dimension and a sub-image size. The histograms
for the whole image data set [red in Fig. 7(b)] show clear distribution tails similarly to Fig. 4.
Since the area for a particular defect generally spans plural sub-images as shown in Fig. 6, their
discrepancy indices span a certain range. Thus, for each defect in each image, 5 × 5 sub-images
including the defect are manually extracted as defect vicinity, and one with the highest discrep-
ancy index of 5 × 5 sub-images is selected as defect center. Discrepancy index counts of the
defect vicinity and defect center sub-images for all images are added to the histograms in
Fig. 7(b) by green and blue. With latent dimensions of 5 and a sub-image size of 36 nm, for
example, the discrepancy indices for defect center sub-images (blue bars) are higher than 0.01
and they can be detected by setting a threshold around this level. Above this threshold, frequency
counts for defect vicinity sub-images (green bars) coincide with that for the whole sub-images in
the 10 images (red bars), which means that all the frequency counts above the threshold are from
the vicinity of defects. The above means that both the false-negative and the false-positive rates
are zero by setting a proper threshold for this particular case in L/S, where all the defects are quite
different and distinguishable from normal patterns. In L/S patterns, defect selectivity is obtained
with a small sub-image size (24 nm) and low latent dimensions (3), and its dependence on these
two parameters is small, though as discussed later, the repeatability in training processes
becomes poor for low latent dimensions.

3.1.2 2D array of holes

Results for a 2D array of holes (42-nm pitch) are shown in Fig. 8. Here, again, we trained autoen-
coders using image data containing defects. From those images, we manually selected several
missing holes shown in Fig. 8(a), and for each of them, we extracted the defect center and defect
vicinity sub-images similarly to the case in L/S. For small size sub-images (24 nm), discrepancy
indices for defect sub-images are buried in main peaks of histograms because for too narrow
sub-image, it is difficult to distinguish between normal and abnormal features. For medium size
sub-images, the discrepancy indices under low latent dimensions are large both for normal and
abnormal images. With increasing the latent dimensions, the discrepancy indices for normal

(a) (b)

Fig. 7 Discrepancy index histograms of L/S patterns for several sub-mage sizes and latent
dimensions. Bars in red are for whole image data set including defects, green and blue are for
sub-images of vicinity and center of defects shown in (a).
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pattern decrease, whereas that for abnormal patterns remains high, enabling us to distinguish
between the two. With latent dimensions of 5 and a sub-image size of 48 nm, all the defect
centers [blue bars in Fig. 8(b)] can be detected by setting a threshold of 0.015. Immediately
above this threshold, the frequency counts for the whole image data set (red bars) are slightly
larger than that for defect vicinity (green bars), which means that anomalies other than missing
holes are detected. Although they are false positives in terms of missing hole detection, we con-
firm that they include extremely irregular holes and imbalanced hole sizes among adjacent four
holes, which may be worth being detected. Defects in hole arrays are defined as the case where
CD is smaller or larger than a certain threshold and consists of a part of CD distribution, and it is
difficult to distinguish defect-free distribution and defect distribution, in particular for the sam-
ples with large LCDU. Further increasing the latent dimensions decreases the indices for both
images, suggesting that the network begins to learn to reconstruct finer structures including
defects. In contrast to the case in L/S, the sub-image size and latent dimensions need to be set
within a proper range so that the network reconstructs the normal patterns but does not defective
images.

To examine the extendibility of the method, we combined the image data for vertical L/S,
horizontal L/S (obtained by rotating vertical L/S by 90 deg), and 2D hole arrays, and trained
autoencoder with the combined data. The selectivity performance of the trained autoencoder is
shown in Fig. 9. Pattern anomalies in each of the above three type features are successfully
detected by this single autoencoder by setting the threshold at 0.018 for latent dimensions
of 8 and a sub-image size of 48 nm. This suggests that we can expand the variety range of
inspected patterns by adding new types of training data with increasing the latent dimensions.

For the above hole-array images (4096-nm square FOVs at 2-nm pixel size), we applied a
saturation filter to flatten the intensity higher than 0.75 and renormalized the images. Though this
is to remove severe noises observed on unetched surfaces of the original images, which is not
related to pattern defects/anomalies of interest, the influence of such pre-cleaning of image data
on results needs to be examined carefully.

3.1.3 1D random logic pattern

For 1D-logic patterns, we trained autoencoders using defect-free image data and examined their
responses to defect images with the same data as used in Sec. 2.2 under several different latent
dimensions and sub-image sizes. We manually selected 35 typical defect samples in 35 image
data (shown as “labeled defects” in Fig. 11) and extracted the defect center and defect vicinity
sub-images for each of them. Histograms for the whole image data set containing defects (red in

(a) (b)

Fig. 8 Discrepancy index histograms of 2D hole array patterns for several sub-image sizes and
latent dimensions. Bars in red are for whole image data set including defects, green and blue are
for sub-images of vicinity and center of defects shown in (a).
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Fig. 10) show clear distribution tails similar to the case in a 2D array of holes (Fig. 8). For small
sub-image size (24 nm), discrepancy indices for defects are buried in the main peaks of histo-
grams because too narrow sub-image is difficult to distinguish normal and abnormal features.
Discrepancy index rapidly increases with sub-image size since the pattern variations within the
sub-image increase with sub-image size, and higher latent dimensions are required for encoding
them. For 36-nm sub-images, the discrepancy indices under low latent dimensions are large both
for the normal and for the abnormal images because networks cannot well reconstruct even

Fig. 9 Discrepancy index of autoencoder trained by mixed-type patterns. Histograms are shown
separately for each-type pattern and defect.

Fig. 10 Discrepancy index histograms of 1D random logic patterns for several sub-image sizes
and latent dimensions. Bars in red are for whole image data set including defects, green and blue
are for defect vicinity and center sub-images.
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normal images and it is difficult to distinguish them. The discrepancy indices for normal images
decrease with increasing the latent dimensions, showing that the network learns to reconstruct
the normal pattern images. Since it still cannot reconstruct abnormal images, however, the dis-
crepancy indices remain high for defective images, enabling us to distinguish the two. Further
increasing the latent dimensions decreases the indices for both images, suggesting that the net-
work begins to learn to reconstruct finer structure including defects. With latent dimensions of 18
and a sub-image size of 36 or 48 nm, most defect centers for the 35 labeled defects (blue bars in
Fig. 10) are detected by setting a threshold of 0.003. Above this threshold, the frequency counts
for the whole image data set (red bars) slightly exceed that for defect vicinity (green bars),
suggesting that the image data contain anomalies other than the 35 labeled defect samples. To
show the nature of detected anomalies more specifically, Fig. 11 categorizes detected or labeled
defects into three groups, detected labeled, undetected labeled, and detected unlabeled anomalies
for three defect-types. Note that the above three groups don’t represent true-positives, false-
negatives, and false-positives, respectively, but provide a snapshot of detection capability under
a specific detection threshold (0.003) since the 35 labeled defects do not represent all the true
defects contained in the evaluated 35 images. For bridging, broadening, and breaking types, most
labeled defects were detected, and several other defects that are similar but not labeled were
newly found. In contrast for quasi-missing, necking, and narrowing types, some labeled defects
were not detected while several other defects that are similar but not labeled were found. These
undetected labeled anomalies are detected by lowering the threshold with the increased number
of detections in quasi-missing, necking, and narrowing type (unlabeled) defects, suggesting the
above threshold is appropriate for bridging, broadening, and breaking-type defects but too high
for quasi-missing, necking, and narrowing-type defects. Note that completely missing pattern
features are difficult to detect without reference design data. We will discuss varieties of pattern
anomalies detected in 1D-logic patterns in Sec. 4. The sub-image size and the latent dimension
need to be set so that the former covers the necessary pattern variations while keeping enough
defect selectivity, and the latter reconstructs the normal patterns but does not defective images.

Fig. 11 Classification of detected and missed pattern anomalies. Note that labeled anomalies
are typical defect samples arbitrary selected from the inspected data and are not the comlete list
of true defects.

Fukuda and Kondo: Anomaly detection in random circuit patterns using autoencoder

J. Micro/Nanopattern. Mater. Metrol. 044001-11 Oct–Dec 2021 • Vol. 20(4)



With further examination of the extendibility of the method, we mimic more complex 2D
logic IC patterns by adding rotated images of 1D-logic since 2D logic images are not available.
The images used for evaluating the 1D-logic autoencoders are rotated by 90 deg and are added to
the original data for training quasi-2D logic autoencoders. Trained autoencoder successfully
reconstructs normal data in both directions and distinguishes defects from normal patterns by
setting the latent dimensions around 24 (Fig. 12). This again shows that we can expand the
variety range of inspected patterns by adding new types of training data with increasing the
latent dimensions, although the training data for real arbitrary 2D design circuits need other
features such as corners and crossings in resist lines and trenches.

3.1.4 Tuning and validation of autoencoder configuration

Although one of the advantages of autoencoders is that it requires only normal data for training as
previously mentioned, in this section we used abnormal data for tuning and validating the autoen-
coder configuration. In general, the size of anomaly data for this tuning/validation purpose is
much smaller than that required for training DNN with anomalies. Since defect-free data and
defect data as used for explaining the method in Sec. 2.1 are not always available, in practice,
we train and tune autoencoder with data that may contain some defects. Since the occurrence of
defects is rare, we expect that autoencoder can be trained mainly for a normal and majority part of
data. We search autoencoder configurations showing tails in discrepancy index histogram and
further tune the configuration so that defects of interest are included within the tail. Although
we expect that the tuned autoencoder detects other types of anomalies than that used in the tuning
process, this is not guaranteed. To approach this problem theoretically, we will attempt to use
variational autoencoder (VAE) at the end of this section (Sec. 3.3). As a more practical approach,
however, we first tuned/validated autoencoder with small anomaly data and apply it to larger data
containing broader type anomalies and examine its effectiveness. In Sec. 4, for example, we will
apply an autoencoder whose configuration we tuned above using smaller data samples (35 images
including typical defects as shown in Fig. 11) to much larger size data. For further quantitative
evaluations with false negative/positive rates, cross-validation with some reference inspection
methods is required with a clear definition of defect criteria, and this is left for future work.

3.2 Repeatability and Over-Fitting in Network Training

Convergence and repeatability in training autoencoder are examined. Autoencoders with several
latent dimensions were trained repeatedly (five times) using the same training data, and for each
trial, loss-trend curves (for training and validation data) and discrepancy index histograms after
20 epochs are shown in Figs. 13(a) and 13(b). They show a large variation when the latent
dimensions are low probably due to random initialization of weights and data split. Thus, to
obtain fair results within practical epoch number, it is generally desired to try training several
times to confirm the repeatability of results or for choosing the best-performing network. The
results in Figs. 7–12 were selected from the most favorable results in several trials for each
condition.

Fig. 12 Discrepancy index histograms of quasi-2D random logic patterns for several latent
dimensions. Blue and red are for normal pattern images and for defect center sub-images.
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In the above examples, the typical number of sub-images used for training data is 1000 k,
which was limited by the computer resource used in this study. To avoid over-fitting, this number
needs to be sufficiently large compared with the number of network parameters (100 k to 400 k
typically), and the above training data number may not seem enough. However, the decreasing
trend in loss functions for training data and validation data shows no sign of overfitting as shown
in Fig. 13(a). It has been known that injection of noise suppresses over-fitting and improves the
performance of supervised and unsupervised neural networks including autoencoders.11 Our
input data, SEM images are known to contain a considerable amount of noise inherent in its
image formation mechanisms, such as stochastic electron emission and scattering within a speci-
men, and this may effectively suppress over-fitting. Also, we found no particular effectiveness in
introducing regularization or dropout.

3.3 Fundamental Reliability

Although the above discussion shows the practical effectiveness of the method, a fundamental
question remains: is it guaranteed that autoencoder does not reconstruct defect images? One
approach to answering this question is to show that defect images are not contained in the space
generated by the decoder. Since it is difficult for multi-perceptron autoencoders to visualize
this, however, here we apply VAE. In VAE, an encoder encodes an input image to a vector
(z1; z2: : : ; zn) in an n-dimension latent space, and a decoder generates an output image from
a nearby vector (z1 0; z2 0: : : ; zn 0) in the latent space. This is similar to conventional autoencoders,
but in VAE, similar input patterns are encoded to points close to each other in the latent space,

(a)

(b)

Fig. 13 Dependence of convergence and repeatability in training process on latent dimensions.
Training of 1D-logic pattern images is repeated five times. (a) Relationship between loss function
and the number of epoch in the training process. Solid and dashed lines are for training and val-
idation data, and different colors are for different trials. (b) Discrepancy index histograms of 1D
random logic patterns. Blue and red are for normal pattern images and defect center sub-images.
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and from nearby points in the latent space, the decoder generates output patterns similar to each
other. See Refs. 12 and 13 for more details on VAE. Any input image is encoded to some point in
the latent space no matter if it contains defects or not. Thus, by examining variations in images
generated from every point of latent space, we can examine possible variations in the output of
the decoder.

Convolutional VAE (n ¼ 2) shown in Fig. 14 is trained with the 2D hole array data used
previously in Sec. 2.1. Figure 15(a) shows the decoder output images generated from each point
(latent vector) of 2D latent space ðz1; z2Þ after training. Generated images cover all the possible
variations in patterns within the window size of the sub-image but contain no defect image. Here,
we used a simple 2D hole array since it requires low dimension (2) for latent space for covering
the pattern variation, and its effectiveness is easily visualized as shown in Fig. 15.

Next, we input sub-images around defects shown in Fig. 15(b) into the trained VAE. Sub-
image clipping pitch (20 nm) was set slightly smaller than half pattern pitch (21 nm). The latent
vector encoded from each sub-image (mi = mean component of zi) is plotted in Fig. 15(c), and
the sub-images generated by VAE are shown in Fig. 15(d). We categorize 36 sub-images with
nine holes into four types A, B, C, and D as shown in Fig. 15(b), and latent vectors for the same
type form a cluster on the latent space, including defect hole shown by red in Figs. 15(b) and
15(c). Similar sub-images are generated from the latent vectors for each cluster [Fig. 15(d)], and
again, we can detect a defect hole by comparing the input and output sub-images. Note that
the generated images reproduce small differences in hole pattern positions due to the difference
between clipping and pattern pitches.

Using properly trained VAE, it is unlikely that autoencoder reconstructs defect images
although this is not the verification for multi-perceptron autoencoder. Unfortunately, VAE
requires longer computation time than multi-perceptron (both for training and for reconstruc-
tion), and detection accuracy of multi-perceptron needs to be examined from the requirement for
IC pattern inspection, as reliability is often the issue in applying AI to mission-critical problems.

4 Application Results

4.1 Experiments

Here we examine the feasibility of our method in detecting anomalies in moderate areas of IC
patterns fabricated by EUV lithography. First, 30-μm square areas of 1D design random logic

Fig. 14 Convolutional variational autoencoder (CVAE) configuration.
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circuit patterns with 32- and 36-nm pitch were inspected. A mask containing the block of the
above two kind patterns was exposed by EUV exposure tool (NA ¼ 0.33) at eleven exposure
fields, F1, F2, . . . , F11. Each 30-μm square area of the 22 blocks (32- and 36-nm design-pitch
blocks in fields F1 to F11) was inspected by an SEM inspection tool,5 and 225 pictures (2048-nm
square FOV with 2-nm pixel size) were obtained for each block.

In the previous examples, we used normal data for training autoencoders. Since another
analysis using the same image data5 shows that the best patterning results are obtained for the
field F5 to F9, we trained autoencoders using the image data for these fields. For each design
pitch, we clipped 36-nm square sub-images from each of 675 images (F5, F7, and F9) with 10-
nm clipping pitch in both x- and y- directions, and from about 12,500,000 clipped sub-images,
about 1,000,000 sub-images were selected as training data. This number of training data is lim-
ited by computing resources, and a larger number is desirable in general. In real IC manufac-
turing environments, defect-free images are not guaranteed for training data, and we do not
confirm our training data to be defect-free. Since we generate the training data by selecting
a part of data within the process window where the defect probability is generally low, we expect
the number of defects contained in selected training data is small. Further, even if they contain
some defects, as the general characteristics of autoencoders, they rarely learn to reconstruct
defect images in general if the number of defects in training data is sufficiently small compared
with that of normal patterns as we saw in Figs. 7, 8, and 9.

Next, we applied the above-trained autoencoders to all the SEM pictures taken for 11 fields
for both design-pitches and calculated the discrepancy indices for every sub-image within 30-μm
square pattern blocks for each field. If an end of normal pattern in an adjacent area appears in the
periphery of a sub-image, autoencoders sometimes detect it as an anomaly. This can be judged by
shifting the sub-image window position to contain the whole part of interest. Thus, to avoid this

(a) (b)

(d)(c)

Fig. 15 Convolutional variational autoencoder. (a) Decoder output images generated from each
point of 2-dimensional latent space ðz1; z2Þ; (b) about 36 sub-images around a missing hole
defect; (c) distribution of latent vectors encoded from 36 sub-images in (b); shown in red are for
sub-images including the defect; (d) CVAE output sub-images corresponding to (b).
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false detection, the clipping windows are set so that neighboring sub-images have overlapping
areas, and we count the anomalies detected in adjacent sub-images as one identical defect. As a
result, detected anomalies are classified using two parameters, discrepancy index representing
the strength of anomaly and multiplicity (the number of sub-images related to one defect)
representing the size of anomaly and/or the reliability of detection.

4.2 Defect Characteristics

Spatial distributions and frequency distributions (histograms) of discrepancy index for sub-
images contained in 30-μm square block are shown in the second and fourth columns of
Figs. 16 for 11 exposure fields. Frequency counts for high discrepancy index increase as the
exposure fields deviate from their center. We set a threshold for the discrepancy index and
extracted high index spots as anomalies/defects. The distributions of extracted defect locations
are shown in the third column of the figure. Detected anomalies are classified using the pre-
viously explained discrepancy and multiplicity indices. Scatter plots between these two indices
are also shown in the fifth column of Fig. 16.

For lower field numbers, the number of defects rapidly increases with decreasing the field
number, and their multiplicity and discrepancy distribute are limited. The SEM images around
the extracted defect spots are shown in Fig. 17. We find missing/necking-type defects for 32-nm
design-pitch and many edge-placement-error (EPE) type defects such as local narrowing of
trench width for both design-pitches. We also detect some distortions or deformations in local
pattern shapes that are difficult to classify. For higher field numbers, the number of defects rap-
idly increases with the exposure number, and a positive correlation is found between discrepancy
and multiplicity (Fig. 16). For anomalies with high discrepancy and multiplicity indices, we find
bridging-type defects in particular for 32-nm design pitch, which is supposed to be from the local
collapse of narrowed resist lines (Fig. 17). For 32-nm pitch samples, we detected a few defects
for both types even at the center field (F7). Anomalies with low discrepancy and multiplicity are
mostly EPE-type and more in number than the bridging-type defects. The product of both indices
can also be used for screening and classifying anomaly types. Again, we detected a lot of dis-
tortions or deformations in local pattern shapes that are difficult to classify. Although they are not
critical defects such as necking or bridging, their impact should not be overlooked, and the
present method effectively detects these unknown anomalies with neither prior knowledge about
them nor the need of defining them in advance. It clarifies the dependence of the number and
type of defects on exposure fields using a single measure.

4.3 Discrepancy Index as Patterning Process Monitor/Pattern Fidelity
Indicator

Since the discrepancy index reflects any deviation in pattern image from ideal, expected, or
allowed ones, we can use it as a single indicator for varieties of problems in patterning processes
and resultant pattern fidelities. Further, their statistical information such as the frequency and
spatial distributions help us reliably capture a tiny sign of these problems from complex
unknown causes, and we can use them beyond defect inspection purposes.

For example, the shape of the discrepancy index histogram shown in Fig. 16 is very sensitive
to the change in processes even below the defect criteria. Thus, it can be used as a predictor/
warning of problems in patterning processes even if it is for a limited area and no defect is
detected in the area. The spatial distribution signatures of the discrepancy index also effectively
visualize defect characteristics and sometimes suggest their origin. The spatial distributions of
the discrepancy index within 30-μm square pattern block (Fig. 16) and its typical magnified
image within 2-μm square FOV [Fig. 18(a)] show that high discrepancy index spots appear
randomly, suggesting their generation mechanism is stochastic. In another sample, however,
we observe a clear cluster of anomaly spots, which could suggest large size contaminants
or particles [Fig. 18(b)]. Another example shown in Fig. 18(c) observed for the sample after
etching clearly visualizes the damage on resist patterns caused by SEM observation after a resist
development.
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(a) (b) (c) (d) (e)

Fig. 16 Defects/anomalies in 1D random logic patterns detected by autoencoder for several expo-
sure fields (F1–F11). (a) SEM views of typical sample patterns; (b) and (c) distributions of discrep-
ancy index and defect locations in 30-μm square inspected area; (d) histograms of discrepancy
index for sub-images within 30-μm square inspected areas; and (e) distribution maps of discrep-
ancy and multiplicity indices for defects detected within 30-μm square inspected areas.
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4.4 Defect Sensitivity

Lastly, we show the ability of the method to detect extremely tiny defects. For defects smaller
than sub-image size, the ratio between the sizes of defects and normal patterns increases with
decreasing sub-image size, and thus, a high SNR defect detection is expected as we previously
explained. Here, 2D arrays of pillar patterns are inspected by the autoencoder trained and opti-
mized for the patterns using image data containing defects. The histograms of the discrepancy
index [Fig. 19(a)] show clear distribution tails and we extract sub-images with the discrepancy
index higher than 0.003 as defects. Spatial distributions of the discrepancy index [Fig. 19(b)]
and magnified SEM images around extracted defects [Fig. 19(c)] are shown for each detected
defect. The autoencoder detects an extremely tiny (several nanometers in diameter) defect in

Fig. 17 Magnified SEM images of defects detected by autoencoder.
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Case C and D with high SNR as shown in Fig, 19(b) as well as a typical pattern defect in Case
A, B, and E.

5 Conclusions

The method presented in this paper will be effective and useful in particular when a huge amount
of image data becomes available from high-speed SEM inspection tools for advanced EUV

Fig. 18 Spatial (across-FOV) distributions of the discrepancy index. (a) randomly generated
defects; (b) clustered defects; (c) SEM damage. The sizes of FOV are 2, 3, and 3 μm for (a),
(b), and (c).

(a)

(b)

(c)

Fig. 19 Defects in a 2D array of dots detected by autoencoder. (a) Discrepancy index histogram;
(b) across-FOV distributions of discrepancy index containing defects A–E; and (c) magnified SEM
viewgraph around each extracted defect.

Fukuda and Kondo: Anomaly detection in random circuit patterns using autoencoder

J. Micro/Nanopattern. Mater. Metrol. 044001-19 Oct–Dec 2021 • Vol. 20(4)



patterns and pattern anomaly detection is required for them. It enables us not only to directly
detect a wide variety of defects with neither design data nor prior knowledge about defects
but also to capture a small sign of change in process conditions and pattern fidelity through
frequency and spatial distributions of autoencoder discrepancy index.
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